首页 申请书推荐信邀请函通知工作总结工作计划策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>比的意义教案优秀

比的意义教案优秀

时间:2023-09-07 10:27:09 教案 我要投稿
  • 相关推荐

比的意义教案优秀

  作为一名无私奉献的老师,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?以下是小编收集整理的比的意义教案优秀,仅供参考,欢迎大家阅读。

比的意义教案优秀

比的意义教案优秀1

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的`联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

 一、引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (!)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法。

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5

比的意义教案优秀2

  教学内容:

  北师版五年级上册分数的再认识

  教学过程:

  一复习导入

  1用分数表示下图中的阴影部分,并说出这个分数所表示的意义(教材35页第1题)学生独立填后交流

  2揭示课题

  【设计意图回忆已学过的相关知识,了解学生的知识基础为新课教学做准备。】

  二理解分数的意义

  1活动一拿一拿

  出示三个盒子分别装有8、6、8支粉笔。

  师:这里有三盒粉笔,你能不能从每一盒中分别拿出整体的。

  请三名学生到前面拿粉笔。

  师:请先说说你打算怎么拿?

  师:其他同学注意观察,你发现了什么?

  生:我发现他们拿的支数有的一样,有的不一样。

  师:猜一下,会是什么原因?

  生:可能数错了吧!

  让学生数一数,证实数对了。

  师:没数错,为什么呢?

  生:可能三盒的粉笔总数不一样多。

  师:请三位同学告诉大家每个盒子里粉笔到底是多少支?

  师生小结

  2活动二说一说

  出示两本书

  师:这两本书怎样

  生:一厚一薄

  师:两位一人拿一本。左边的同学看了第一本书的1/3,右边同学看了第二本书的1/3,他们看的一样多吗?为什么?

  生:因为书的厚薄不同,也就是总页数不同,因此他们看得页数的1/3就不一样多。

  师:什么样的情况下,两本书的1/3是一样的?

  小结。

  3活动三想一想

  师:把6支、9支、12支花分别平均分给3个人,每人得到的花可以怎样表示?

  师:你又有什么发现?

  师生小结。

  【设计意图:让学生在具体的情境中,体会“整体”不同相同的`分数表示的大小不同通过想一想的活动,拓展学生对分数的认识,激发了学生学习兴趣。】

  三练习反馈

  1出示34页题目

  学生独立画后,交流展示

  2完成教材p35练一练中的题目

  第2题

  学生独立涂后并说想法

  第3题

  学生画后在说画法。再判断这些图形的大小一样吗?

  第4题

  结合“捐零花钱”的实际问题,体会分数的相对性

  【设计意图:练习的层次安排比较分明,层层深入的引导学生对分数进行充分的再认识。】

  四你知道吗

  学生阅读,感受分数的历史悠久和中华民族的聪明才智。

  五课堂小结

  板书设计分数的再认识

  整体不同同一分数表示具体数量不同

  厚多

  书1/3

  薄少

比的意义教案优秀3

  教学内容

  人教版课标实验教材五年级下册第60——64页。

  教学目标

  1、知道分数的产生,理解分数的意义,掌握分数单位。

  2、在具体的生活情境中感悟分数的意义,理解单位“1”的含义,体会部分与整体的关系,培养学生的抽象概括能力。

  3、通过合作学习使学生获得成功、兴趣、愉悦、兴奋这些丰富的情感体验,并感受到生活中处处有分数。

  教学重点

  自主探究分数的意义。

  教学难点

  建立单位“1”的概念。

  教学过程

  一、导入新课

  师出示分数3/7 6/8 1/4 认识吗?读一读。这些数都是我们曾经学过的分数。

  师:你们知道分数是怎样产生的吗?想知道吗?从古至今,我们在进行测量、分物的时候往往不能得到整数的结果,就用分数来表示。(课件演示)

  二、探究新知

  1、动手操作,理解1/4

  师:今天我们就进一步来认识分数,了解分数的意义.(板书课题) 为了让大家更好的理解分数的意义,今天老师为大家准备了一个正方形、4支笔、8颗糖。

  活动要求:现在我们以1/4为例,请同学们4人一组,通过折一折、分一分、涂一涂的办法表示出它的1/4。

  2、小组合作,交流方法

  师:分好的同学就与同组的小伙伴交流一下,说说1/4是怎么得到的?1/4的含义是什么?

  组1:我们选的是正方形。我们把正方形平均分成了4份,每一份是这个正方形的1/4。

  组2:我们选的是4支笔。把4只笔平均分成了4份,其中一份是这些笔的.1/4。

  组3:我们选的是8颗糖。把8个糖平均分成了4份,其中一份是8个糖的1/4。

  3、建立单位“1”的概念

  师:仔细观察这3幅图,它们有什么相同的地方?

  生1:都是平均分成了4份,都表示了各自的1/4。

  生2:被分的东西不一样,每一份也不一样。

  师:对,大家都发现原来是因为被分的东西不一样,有的是一个物体、有的是一些物体。像这样的一个物体或一些物体,我们都可以把它看作是一个整体。(板书“整体”)一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。(板书单位“1”)

  4、归纳分数的意义

  师:谁来说说什么是分数?

  生:把单位“1”平均分成一份或几份,就可以用分数表示。

  师:一个整体用什么表示?平均分是什么意思?若干份是什么意思?(生:很多份)

  5、练习:

  四、认识分数单位

  自学课本,学生汇报什么是分数单位。

  生:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:你能个举例子来说明吗?

  生:2/3的分数单位是1/3。(板书2/3)

  师:他有几个这样的分数单位?(2个)

  师:3/4的分数单位是多少?11/23呢?17/120呢?你们找分数单位怎么又准又快呀?有什么简便的好方法?”

  生:分数的分母是几,它的分数单位就是几分之一,分子是几,就有几个这样的分数单位。

  五、巩固练习

  六、全课小结

  师:今天这节课你有什么收获?对自己学习情况进行简单评价。有收获的同学占全班人数的几分之几?(百分之百)在学习评价的时候也用到了分数,分数真是无处不在,希望大家课后到生活中去寻找分数,进一步去了解分数。

比的意义教案优秀4

  教具准备

  投影。

  教学过程

  (一)导入

  分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。

  (二)教学实施

  1 . 引导学生归纳、梳理知识点。

  提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?

  学生自己试着归纳,然后请学生汇报发言,集体补充。

  老师随着学生的汇报,进行板书。

  分数的意义

  分数的意义

  分数与除法的关系:a÷b= (b≠0)

  真分数

  真分数和假分数

  假分数 带分数

  约分 最大公因数

  分数的基本性质的

  通分 最大公倍数

  ① 同分母分数

  分数大小的比较 ② 同分子分数

  ③ 分子、分母都不同的分数

  分数化成小数

  分数和小数的互化

  小数化成分数

  2 .应用知识练习。

  ( 1 )完成教材第101 页的第1 题。

  先独立完成填空,集体订正。

  然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?

  ( 2 )完成教材第101 页的第2 题。

  让学生先将这7 个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。

  ( 3 )完成教材第101 页的第3 题。

  学生先独立完成,然后说说比较分数的`大小有几种情况,怎样分别比较分数的大小。

  ( 4 )完成教材第101 页的第4 题。

  先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的互化练习。

  提问:互化时要注意什么?

  (四)思维训练

  1 . 分数 是真分数,而且可以化成有限小数,x 最大是几?

  2 .一个分数,分子和分母的和是43 ,如果分母加上17 ,这个分数就可以化简成言,这个分数是( ) o

  3 .一个最简分数,把它的分子扩大2 倍,而分母缩小到原来的 后,正好等于 ,这个分数原来是( )。

  (五)课堂

  通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。

  教学目标

  1 .通过复习,帮助学生梳理本单元的知识要点及知识间的联系。

  2 .培养学生归纳、知识的能力,掌握和复习知识的方法。

  3 .培养学生自觉复习的习惯。

  重点难点

  归纳、本单元的知识点。

比的意义教案优秀5

  教学目标

  1.使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2.在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的。画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、自主活动,认识比

  1.用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2.用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3.理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4.自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、巩固练习,深化理解

  1.完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2.完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3.小强和爸爸身高的'比。

  出示:小强的身高是1米,他爸爸的身高是173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4.糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

比的意义教案优秀6

  教学目标:

  1.通过练习体会小数所表示的意思,理解小数的意义。

  2.通过练习理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教法学法:

  小组合作交流学习法、练习法

  教学过程:

  一、复习导入新课。(小黑板出示)

  2角5分 = ( )元

  9分米 =( )米

  7分 =( )元

  135克 =( )千克

  3元4角 =( )元

  3分米2厘米 =( )分米

  二、自学后完成下面问题

  1.一个小数整数部分的最低位是( )位,计数单位是( ),小数部分最高位是( ),计数单位是( ),这两个单位间的进率是( )。

  2.0.78的`计数单位是( ),它含有( )个这样的计数单位。

  3.由2个十、7个0.1和5个0.001组成的数写作:( ),

  读作:( )

  4.连线题: 0.008 0.8 0.08

  零点八 零点零八 零点零零八

  5.判断

  (1)8.76读作:八点七十六。( )

  (2)4.32是三位小数。( )

  (3)5.961中的6在百分位上,表示6个0.01。( )

  6.一个小数,它的百位和百分位上都是2,其余各位都是零,这个小数写作( )

  7.0.0302用分数表示是( )

  8.下面几个数字中的9分别表示什么意义?

  9.26 ( )

  0.926( )

  0.296( )

  0.269( )

  三、作业布置。

  1、作业本做练一练2、3题

  2、完成相应配套练习。

  板书设计:

  小数的意义(二)

比的意义教案优秀7

  教学内容:比例的意义、基本性质,比例各部分名称,组比例。

  教学目标:

  1. 使学生理解比例的意义,认识比例各部分的名称。

  2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

  教学重点:比例的意义和基本性质。

  教学难点:理解比例的基本性质。

  教学过程:

  一、 复习

  1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

  2、 求下面各比的比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、 新授

  提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

  1、 比例的意义

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  从上不中可以看到,这辆汽车:

  第一次所行台的路程和时间的比是____;

  第二次所行驶的路程和时间的比是____;

  这两个比的比值各是多少?它们有什么关系?

  (1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

  板书:80:2=200:5 或 =

  师:这样的式子,我们给它一个名字叫做比例。

  (2) 口答

  A、把复习第2题中两个比值相等的比用等号连起来。

  B、用等号连接起来的`式子叫做什么?

  C、根据刚才的回答,你能说出什么叫比例吗?

  (3) 小结。

  A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

  B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

  (4) 练习,课本第10页做一做。

  2、 比例的基本性质。

  (1) 比例各部分的名称。

  引导学生观察黑板上的例题:80:2=200:5

  并自学课本

  提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

  (2) 说出下面各比例的外项和内项?

  6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

  (3) 计算:上面比例中的外项积与内项积。

  (4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

  师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

  (5)你能得出什么结论?

  三、 巩固练习

  1、 完成第2页的做一做。

  2、 完成第3页的做一做第1题。

  四、 总结

  1、 比例的意义和基本性质是什么?

  2、 怎样判断两个比能否组成比例?

  五、 作业

  1、 完成练习四的第1-3题。

比的意义教案优秀8

  教学目标:

  1、将十进制低级单位的数改写成高级单位的数,进一步体会小数的意义。

  2、会用小数表示一个物体的长度和质量等。

  教学重点:

  通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  教学难点:

  会小数与十进分数的关系,理解小数的意义,

  教法学法:

  主动探究法、实验操作法,讲练结合法。小组合作交流法

  教学准备:

  学生、老师准备尺子。小黑板

  教学过程:

  一、检查预习

  1、你能说一说小数的读法和写法吗?

  2、把下面的数改写成对应的小数或分数。

  二、展示交流。

  1、提出自己的疑问供小组成员讨论。

  2、每组根据任务大小派出若干名同学展示学案的活动一至活动六的内容,同学认真听,认真评,并提出置疑。

  3、教师精讲。

  三、探究新知

  1、说一说课本第6页上得每一个2分别表示什么?

  2、小数点后面的每一位都表示什么?

  3、自学提示。学生自学后独立完成括号内的.题目。

  4、精讲例题。

  四、课堂总结

  今天你有什么收获?

  五、当堂训练。

  1、填空。

  4分米=( )米

  52厘米=( )米

  450克=( )千克

  69克=( )千克

  5元6角7分=( )元

  1米5分米 =( )米

  2、(1)0.4的计数单位是( ),它有( )个这样的单位。

  (2)0.36的计数单位是( ),它有( )个这样的单位。

  (3)0.1米表示把1米平均分成( )份,有这样的( )份。0.4米里有( )个0.1米。

  (4)0.5元表示把1元平均分成( )份,有这样的( )份。

  六、作业布置。

  板书设计:

  小数的意义(四)

比的意义教案优秀9

  课题:人民教育出版社第八册《数学》第四单元第1课《小数的意义》

  教学目标:

  1、使学生知道小数的产生过程,理解分数与小数的联系。

  2、使学生明确小数的计数单位,认识小数并理解小数的意义。

  3、培养学生的观察能力、分析能力、抽象概括和迁移能力。

  教学重点:使学生通过分数与小数的联系从而理解小数的意义。

  教学难点:理解小数的.意义。

  教具准备:多媒体课件、米尺。

  教学过程:

  一、设疑激趣、揭示课题。

  教师出示钢笔,写出价格13.50元。

  师:这是个什么数?(学生:小数)

  师:小数和我们学过的整数有什么不同?

  生:有圆点……

  师:小数是仿照整数写成的,用小数点隔开,左面是小数的整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)

  第一组数:1米7分米3厘米2米2分米6厘米

  第二组数:1.73米2.26米

  师:那一组数更简明?(学生:第二组数)

  师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的意义。

  二、探究新知

  1、认识一位小数。

  教师出示媒体。

  师:把1米平均分成10份,每份是多少?生:1分米1米=10分米

  师:那么反过来,1分米等于多少米呢?(生:米)师:

  师:还可以把米写成小数是0.1米。

  师:0.1米是由哪个分数得来的?(生:是由米得来的。)

  师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)

  师:请同学们观察这一组数,你发现什么?

  教师引导:小数点后面有几位数?0.1、0.3分别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?

  学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。

  师:0.7表示()个。

  2、认识两位小数。

  师:把1米平均分成100份,每份是多少?你能运用学习一位小数的方法、结合媒体上的资料自己研究出新的小数吗?

  分数小数分数小数

  出示课件:1厘米=()米=()米15厘米=()米=()米

  学生自主研究,教师参与到学生的研究中。

  学生汇报研究的成果:

  首先填好空。

  师:你发现了什么?

  学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……

  教师对学生没发现的给予引导启发。

  师:0.75表示()个。

  3、认识三位小数。

  师;你能继续研究出其他的小数吗?

  教师出示媒体:

  把1米平均分成1000份,每份是1毫米。

  分数小数分数小数

  1毫米=()米=()米63毫米=()米=()米

  学生自主研究后汇报交流:

  分母是1000的分数可以写成三位小数,计数单位是千分之一………

  教师对学生每发现的给予引导启发。

  师:0.63表示()个。

  4、抽象概括小数的意义。

  讨论:1、小数是由分母是多少的分数写成的?

  2、一位小数可以用来表示什么?二位小数、三位小数呢?

  3、什么叫小数?

  学生先自己说,教师再指明学生说。

  教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。

  教学例1:

  课件出示。学生独立完成后汇报交流。

  师:这个题你是怎样想的?

  三、实践应用。

  课件分别出示。

  1、0.5里有()个0.1,

  0.09里有()个0.01,

  0.013里有()个0.001。

  2、教师出示图,学生在书上完成后集体交流。

  3、连线,教师出示连线图,学生在书上独立完成后集体交流。

  四、应用拓展。

  0.425里有()个0.001

  0.20里有()个0.01

  用0、2、5、8这四个数和小数点你能组成什么样的小数?

  五、板书设计

比的意义教案优秀10

  教学内容:

  北师大小学数学五上《分数》单元第一课时

  教学目标:

  1、合具体的情境,进一步体会"整体"与"部分"的关系。

  2、通过学生参与具体操作活动,体验数学思考的教程与乐趣。

  教学重,难点:

  体会一个分数对应的"整体"不同,所表示的具体数量也不同。

  教学过程:

  复习与引入:

  出示:

  师:请用一个数分别来表示图中的涂色部分

  生:1/2,1/2,1/4

  师:请你说一说1/2表示什么意思

  生:把一个整体平均分成2份,其中的一份是这个整体的1/2

  师:分数3/4表示什么意思

  师:这个整体不仅可以是一个物体,也可以是表示一堆物体。

  师:这是两张同样大小的长方形纸,这两个1/2相等吗

  生:相等(板书:1/2=1/2)

  二,取珠子,比多少

  1、取1/2

  师:这有两个盒子ab装有一些珠子,请两个同学上来各取出每个盒子珠子的1/2

  生1:从a盒子中取出了3个

  生2:从b盒子中取出了4个

  师:同样是取了1/2,为什么会不一样呢

  (同桌互相议论)

  生3:ab两个盒子中的珠子的数量不一样多,所以拿出的1/2不一样多

  师:猜一猜,哪个盒子中的`珠子数量多一些为什么

  生4:b盒子多一些,因为取出来的多一些,总体也就多一些

  师:每个盒子各有多少个怎么知道的

  生5:a盒子有6个,b盒子有8个。a盒有2个3,b盒有2个4。

  师小结:都取了1/2,但由于对应的整体不一样多,所以取出来的数量不一样。如果要使取出的一样多,要怎么放珠子

  生6:各放入8个

  生7:各放入6个

  师:也就是放各自对应的整体相同。

  2、练习:

  李老师和小明各看了一本书的1/3,(老师拿一本厚书,小明拿一本薄书)谁看得多为什么

  如果李老师与小明看的书交换,还是各看了1/3,谁看得多为什么

  3、比大小,放珠子

  师:我们知道,1/4小于3/4

  师:这有两个盒子ab,要求从a盒中取出1/4,从b盒中取出3/4,要求a盒取出来的珠子数大于b盒取出来的珠子数。两个盒子该怎么放珠子

  学生讨论

  一组同学商量,到前台操作展示过程

  同桌甲:从a盒中放入12个,从b盒中放入4个

  同桌乙:从a盒中放入16个,从b盒中放入4个

  生:我发现a盒中放入的珠子要比b盒中的多才行。

  师:这要求从a盒中取出1/4,从b盒中取出3/4,要求a盒取出来的珠子数等于b盒取出来的珠子数。两个盒子该怎么放珠子

  学生讨论操作

  生:我发现只要a盒中放入的珠子是b盒中的3倍,就相等

  师:这是为什么

  生:因为b盒中取的份数是a盒的3倍

  三,分析与讨论

  师:1/4小于3/4,这是我们以前都知道的知识,而今天我们发现a盒的1/4有可能等于可大于b盒的3/4,到底1/4与3/4之间有什么大小关系

  生1:不能比

  生2:1/4小于3/4

  学生争辩明确:要比大小,必须在整体相同的情况下,分数1/4/小于3/4默认是相同的单位1。

  四,练习:

  1.p34画一画:

  一个图形的1/4是,这个图形什么

  2.填空:

  一筐苹果的1/5是1个苹果,这筐苹果共个

  一筐苹果的1/6是1个苹果,这筐苹果的2/6是个

  一筐苹果的1/2是2个苹果,这筐苹果的1/4是个

  一堆苹果的2/5是400千克,这堆苹果共千克。

  3.p35:小明捐了零花钱的1/4,小芳捐了零花钱的3/4,小芳捐的一定比小明多吗?为什么?(分别讨论)

比的意义教案优秀11

  教学目标

  1.使学生理解比例的意义,掌握组成比例的条件。

  2.使学生能正确地判断两个比能否组成比例。

  3.认识比例的各部分名称,掌握比例的基本性质。

  教学重点和难点

  比例的意义和性质的理解与应用。

  教学过程设计

  第一部分:比例的意义

  (一)复习准备

  1.求比值:

  2.请你找出比值相等的两个比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)学习新课

  1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

  板书:80∶2

  再请你说出第二次行驶路程和时间的比。

  板书:240∶6

  师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

  师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

  得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

  教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

  师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

  思考题:

  1.什么叫比例?

  2.比例的各部分名称?

  3.组成比例的重要条件?

  采取自学→两人讨论→集体讨论。

  师再次强调组成比例的条件:

  A.必须是两个比。

  B.两个比的比值必须相等。

  C.必须是一个式子。

  最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

  师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

  比例还有其它书写格式吗?请同学们看,老师怎样写。

  (三)巩固反馈

  1.判断下面两个比能否组成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并组成比例。(学生先写再说)

  3.随意写比例,互相查看。(至少写2个)

  第二部分:比例的性质

  (一)讲授比例的性质

  让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

  学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

  请你指出黑板上比例中的内外项。

  现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

  通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

  师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

  师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

  师:比例写成分数形式时,比例的性质如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

  (二)课堂练习

  (放幻灯片)

  (1)用比例性质验证你所写的比例是否正确?

  (2)用2,8,5,20四个数组成比例。

  (3)填适当的数。

  3∶18=5∶( )

  为什么填30?有几个答案?

  4.8∶0.6=( )∶2

  为什么只能填16?

  12∶( )=( )∶5

  有几个答案?

  (4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

  (5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

  (三)课堂总结

  (学生小结这节课所学内容。)

  1.质疑:(学生、老师质疑)(幻灯片)

  ①表示两个相等的式子叫比例。对吗?

  2.思考题:

  (1)根据30×3=45×2写比例式。

  (2)求x:

  12∶30=8∶x

  能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?

  课堂教学设计说明

  本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的.意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

  第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

  第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

  另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

  在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

  板书设计

比的意义教案优秀12

  教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

  学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

  教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:对单位“1”的理解。

  教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

  教学过程:

  一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

  (1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的`分数。

  学生动手操作,教师巡视。

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

  (3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

  (5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

  ①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

  ②师:为什么可以用1/2来表示?

  ③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

  ④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  ⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

  四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67 的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

  (1)五(1)班的三好生人数占全班的29 。

  (2)一节课的时间是23 小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

  (1)一堆苹果分成4份,每份占这堆苹果的14 ( )

  (2)把5米长的绳子平均分成7段,每段占全长的57 ( )

  (3)14个19 是914 ( )

  (4)自然数1和单位“1”相同。( )

  五、小结。

  今天这节课我们学习了?你有哪些收获?

比的意义教案优秀13

  分数的意义 总42(电36)

  教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义。

  教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义。

  教学难点:使同学理解"分数"的意义,弄清分数单位的含义。

  教学课型:新授课

  教具准备:课件

  教学过程:

  创设情景,温故引新

  1,提问:A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决。即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示。

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识。

  (1)相互交流:① 关于分数我已经知道了什么请把已知道的讲给同学们听。

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义。

  (1)用分数表示下面各图中的阴影局部。[课件1]

  (2)填空。[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( )。

  ② 把一块饼平均分成2份,每份是它的`( )/( )。

  ③ 把一个正方形平均分成4份。1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影。

  用一张正方形的纸,折出它的3/8,并涂上阴影。

  (4)抢答。 [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( )。为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 假如这个文具盒里只有6枝铅笔。现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义

  ⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢

  (5)说说下列分数所表示的意义。[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结。

  我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1"。

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  三,加强练习,深化概念

  竞赛:请两位同学站起来。

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的——————— 这两位同学是全班人数的———————

  四,家作

  1,P88 。1,2

  2,P89 。3

  板书设计: 分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

比的意义教案优秀14

  教学内容:教科书第79~81页,练习十八的第1题。

  教学目的:

  1.使同学比较系统地、牢固地掌握自然数、整数、分数、小数、百分数的意义,以和它们之间的联系和区别。

  2.使同学掌握十进制计数法。

  教具准备:教师把教科书第80页的整数和小数数位顺序表画在小黑板上。

  教学过程:

  教师:“同学们回忆一下,我们在小学阶段学习了哪几种数?”(自然数、整数、分数、小数、百分数。)教师接从上到下的顺序板书数的名称。

  教师:“今天我们复习与这些数有关的一些知识。”

  一、自然数、整数的.意义

  教师:“什么样的数是自然数?”(l、2、3……)在“自然数”后面板书。

  “自然数可以表示什么?”(表示物体的个数。)

  “最小的自然数是什么?”(l。)用彩色笔把“ 1”上色。

  “最大的自然数是什么?”(没有最大的自然数,自然数的个数是无限的。)

  “自然数的单位是什么?”(自然数的单位是1。)

  “任何自然数都是由若干个1组成的。请说出下面几个数各是由多少个1组成的。”教师在黑板上任意写几个自然数,如7、10、25、369、1997……

  教师:“一个物体也没有用什么数表示?”(用0表示。)教师板书“0”。

  “自然数与0有什么关系?”(自然数都大于0。)教师在“自然数”后面板书“(大于0。)”

  “按顺序写数时,0应写在什么位置?”(写在1的前面。)

  教师:“我们在小学学的整数都包括什么数?”(自然数和0。)教师板书“整数”并用大括号把自然数和0括起来。

  “假如说‘整数就是自然数和0’对不对?”(不对。)“为什么?”(因为整数中还包括比0小的整数。)假如同学说不好,教师可以说明:我们在小学学的整数包括自然数和0,到中学还要继续学习比0小的整数。然后,教师在“0”的下面板书“……(小于0的。)”

  综合前面的教学过程,使同学看到如下板书形式。

  整数 自然数:1、2、3、4(大于0的。)

  ……(小于0的。)

比的意义教案优秀15

  教学内容:

  教材第48-49页的内容及相应的“做一做”。

  教学目标:

  1、理解比的意义,掌握比的读、写及各部分的名称。

  2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。

  教学重点:

  理解比的意义,求比值。

  教学难点:

  理解比和分数、除法之间的关系。

  教学过程:

  一、创设情境

  1、播放“神舟”五号顺利升空课件。

  播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)

  2、提问:我们可以怎样表示它们长和宽的关系呢?

  (1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。

  (2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。

  3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)

  二、自学互动,适时点拨

  【活动一】比的意义

  学习方式:独立自学、汇报交流

  学习任务

  1、同类量的比。

  (1)启发:除了用已经学过的这些方法来表示长和宽的关系外,我们还可以怎样表示这两个数量之间的关系?

  (2)自学课本第48页的内容。

  (3)长和宽的比是15比10,宽和长的比10比15。

  (4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的.比。

  2、不同类量的比。

  (1)出示数据,列式求飞船的速度:42252÷90。

  (2)用比来表示路程和时间的关系。

  提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)

  (3)提问:路程和时间是不是同类的量?

  (4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

  3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。

  【活动二】比的读写方法和各部分的名称

  学习方式:独立自学、汇报交流

  学习任务

  1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?

  2、汇报交流:15:10 =15÷10 =3/2

  前项比号后项比值

  3、比值。

  (1)什么是比值?怎么求比值?

  (2)比值可以怎样表示?(分数、小数、整数)

  (3)讨论:比值和比有什么联系和区别?

  【活动三】比与除法、分数的关系

  学习方式:小组讨论、汇报交流

  学习任务

  1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?

  区别:除法是一种运算,分数是一种数,比表示两个数的关系。

  2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)

  三、达标测评

  1、完成课本第49页的“做一做”,集体订正。

  2、完成第52页练习十一的第1题。

  四、课堂小结

  这节课我们一起研究了比,回顾一下你有什么收获。

【比的意义教案优秀】相关文章:

《分数的意义》优秀说课稿06-08

《分数的意义》的优秀说课稿06-08

《分数的意义》教案范文05-16

(优秀)方程的意义教学反思07-10

《分数的意义》优秀说课稿12篇01-17

生日教案优秀05-24

《村居》优秀教案07-12

美术教案(优秀)07-20

大班教案【优秀】07-20

(优秀)小班教案07-21