首页 申请书推荐信邀请函通知工作总结工作计划策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>正弦定理教案

正弦定理教案

时间:2023-10-17 08:18:59 教案 我要投稿

正弦定理教案2篇【精】

  作为一位兢兢业业的人民教师,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!下面是小编精心整理的正弦定理教案,仅供参考,欢迎大家阅读。

正弦定理教案2篇【精】

正弦定理教案1

  一、教学目标

  【知识与技能】

  掌握正弦定理及推导过程,会利用正弦定理证明简单三角形以及求解三角形边角问题。

  【过程与方法】

  通过三角函数,向量数量积等多处知识间联系来体现事物之间普遍联系与辩证统一。

  【情感态度与价值观】

  问题分析解决过程中,体会数学的严谨性。

  二、教学重难点

  【重点】

  正弦定理证明及应用。

  【难点】

  正弦定理的证明,正弦定理在解三角形应用思路。

  三、教学过程

  (一)导入新课

  提出问题:在初中已经学习过解直角三角形,已会根据直角三角形中已知的边与角,求出未知的边与角,直角三角形存在如下边角关系,在一个三角形中各边和他所对角的.正弦之比相等(画xxx展示直角三角形xxx形,引导得出正弦定理公式形式),带领学生猜测对任意三角形都成立?这就是这一节课主要研究的课题。

  板书课题,正弦定理。

  (二)生成新知

  提问:验证任意三角形成立?还需要验证哪些三角形结论成立?

  预设学生回答锐角三角形,钝角三角形。

  提问:如何验证锐角三角形,钝角三角形上述结论成立?能不能转化成直角三角形研究边角关系

  思考:尝试用其他方法证明正弦定理。

  提问:观察正弦定理的结构,这个式子包含了哪些等式,每个等式有几个量?

  学生小组讨论总结,三个等式,每个式子有四个量,如果知道其中三个可以求出第四个。

  (三)巩固提高

  课本例一,例二,思考利用正弦定理,可以解决斜三角形哪些类型的问题。

  小组讨论,师生共同总结正弦定理解决的两类斜三角形问题。

  (四)小结作业

  小结:提问学生本节课有什么收获,阐述正弦定理公式,及解决的问题。

  作业:思考尝试用其他方法证明正弦定理。

  四、板书设计

  (略)

正弦定理教案2

  一、教材分析

  “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并xxx成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。

  而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

  二、学情分析

  我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

  三、教学目标

  1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

  过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

  2、教学重点、难点

  教学重点:正弦定理的发现与证明;正弦定理的简单应用。

  教学难点:正弦定理证明及应用。

  四、教学方法与手段

  为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

  五、教学过程

  为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

  (一)创设情景,揭示课题

  问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

  1671年两个法国天文学家首次测出了地月之间的距离大约为385400km,你知道他们当时是怎样测出这个距离的吗?

  问题2:在现在的`高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

  [设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

  (二)特殊入手,发现规律

  问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

  引导启发学生发现特殊情形下的正弦定理。

  (三)类比归纳,严格证明

  问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

  [设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

【正弦定理教案】相关文章:

正弦定理教案08-18

正弦定理教学反思04-29

《勾股定理的逆定理》说课稿12-01

勾股定理的逆定理数学教学反思12-29

勾股定理说课稿07-16

《勾股定理》说课稿01-05

勾股定理的教学反思11-24

勾股定理的教学反思04-10

《勾股定理》教学反思06-09

探索勾股定理说课稿07-10