首页 申请书推荐信邀请函通知工作总结工作计划策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教案>一次函数教案

一次函数教案

时间:2024-02-21 08:37:25 教案 我要投稿
  • 相关推荐

一次函数教案

  作为一名老师,通常需要用到教案来辅助教学,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?下面是小编为大家收集的一次函数教案,仅供参考,欢迎大家阅读。

一次函数教案

一次函数教案1

  【教学目标】

  【知识目标】

  1、使学生初步理解二元一次方程与一次函数的关系

  2、能根据一次函数的图象求二元一次方程组的近似解.

  3、能利用二元一次方程组确定一次函数的表达式

  【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.

  【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.

  【教学重点】

  1、二元一次方程和一次函数的关系

  2、能根据一次函数的图象求二元一次方程组的近似解

  【教学难点】方程和函数之间的对应关系即数形结合的意识和能力

  知识点

  一、学生起点分析:

  学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

  学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

  二、学习任务分析:

  本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

  1.初步理解二元一次方程和一次函数的关系;

  2.掌握二元一次方程组和对应的两条直线之间的关系;

  3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的`数学思想和方法.

  教学重点

  二元一次方程和一次函数的关系;

  教学难点

  数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.

  同步练习

  A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?

  三典型例题,探究一次函数解析式的确定

  内容:例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.

  (1)写出y与x之间的函数表达式;

  (2)旅客最多可免费携带多少千克的行李?

一次函数教案2

  一、目的要求

  1.使学生能画出正比例函数与一次函数的图象。

  2.结合图象,使学生理解正比例函数与一次函数的性质。

  3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程

  复习提问:

  1.什么是一次函数?什么是正比例函数?

  2.在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x y=2x—1 y=2x+1

  新课讲解:

  1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0。5x

  与 y=—0。5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点.(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0, O)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线.

  这条直线就是正比例函数y=kx(k≠0)的图象.

  观察正比例函数 y=0。5x 的图象.

  这里,k=0.5>0.

  从图象上看, y随x的增大而增大.

  再观察正比例函数y=—0.5x 的图象。

  这里,k=一0.5<0

  从图象上看, y随x的增大而减小

  实际上,我们还可以从解析式本身的.特点出发,考虑正比例函数的性质。

  先看

  y=0。5x

  任取两对对应值。 (x1,y1)与(x2,y2),

  如果x1>x2,由k=0。5>0,得

  0。5x1>0。5x2

  即yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=—0.5x 性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (O,b)与(—,0)

  两点,

  对于例 l中的一次函效

  y=2x+1与y=—2x+1

  就分别选取

  (O,1)与(一0.5,2),

  还有

  (0,1)—与(0.5.0).

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

  2。 一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点( ,0),过这两点的直线即所求图象。

  3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

  四、课外作业

  1.教科书习题13.5A组第l一3题.

  2.选作教科书习题13.5B组第1题.

一次函数教案3

  一、学情分析:

  学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

  二、 学习目标:

  本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

  1.初步理解二元一次方程和一次函数两种数学模型之间的关系;

  2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;

  3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.

  教学重点

  二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;

  教学难点

  通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.

  四、教法学法

  1.教法学法

  启发引导与自主探索相结合.

  2.课前准备

  教具:多媒体课件、三角板.

  学具:铅笔、直尺、练习本、坐标纸.

  五、教学过程

  第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系

  1. 某水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.

  (1) 请找出自变量和因变量

  (2) 你能列出X,Y的关系式吗?

  (3) X,Y的取值范围是什么?

  (4) 在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围).

  2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

  (2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?

  (3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?

  (4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?

  x+y=5与 y=?x?5表示的关系相同

  一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.

  目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

  前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

  第二环节 自主探索方程组与一次函数两种数学模型之间的关系

  探究方程与函数的相互转化

  1.两个一次函数图象的交点坐标是相应的二元

  一次方程组的解

  (1)一次函数y=5-x图象上点的.坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?

  (2)两个函数的交点坐标适合哪个方程?

  ?x?y?5(3).解方程组?验证一下你的发现。 2x?y?1?

  练习:随堂练习1 。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

  2.二元一次方程组的解是相应的两个一次函数图象的交点坐标。

  ?x?y?2(1)解?

  ?2x?y?5(2)以方程x+y=2

  (3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

  (5目的:通过自主探索,使学生初步体会“数”(二元一次方程组的解)与“形”(两条直线)两种模型之间的对应关系,

  由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了“数”的问题可以转化为“形”来处理,反之“形”的问题可以转化成“数”来处理,培养了学生的创新意识和变式能力.

  练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

  第三环节模型应用

  1.某公司要印制产品宣传材料.

  1500元制版费. 甲印刷厂:每份材料收1元印制费, 另收 乙印刷厂:每份材料收2.5元印制费, 不收制版费.若公司要印制x份宣传材料,y甲表示甲印刷厂的费用,y乙表示乙

  印刷厂的费用。

  (1) 请分别表示出两个印刷厂费用与X的关系式。

  (2) 在同一直角坐标系中画出函数的图象。

  (3) 如何根据印刷材料的份数选择印刷厂比较合算?

  第四环节 模型特例

  想一想

  内容:在同一直角坐标系内, 一次函数y = x + 1 和 y = x - 2 的图象(教材

  ?x?y??1124页图5-2)有怎样的位置关系?方程组?解的情况如何?你发现了什x?y?2?

  么?

  二元一次方程的解和相应的两条直线的关系2.

  (1)观察发现直线平行无交点;

  (2)小组研究计算发现方程组无解;

  (3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

  (4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

  目的:进一步揭示“数”与“形”转化关系.通过想一想,将两直线的另一种位置关系:平行与方程组无解相结合,这是对第二环节的有益补充。体现了从一般到特殊的的思想方法,有利于培养学生全面考虑问题的习惯.

  进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

  效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

  第五环节 课堂小结

  内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

  1.二元一次方程和一次函数的图像的关系;

  以二元一次方程的解为坐标的点都在相应的函数图像上;

  一次函数图像上的点的坐标都适合相应的二元一次方程.

  2.方程组和对应的两条直线的关系:

  方程组的解是对应的两条直线的交点坐标;

  两条直线的交点坐标是对应的方程组的解;

  第六环节 作业布置

  习题5.7

一次函数教案4

  教学过程设计

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:我们来看下面两个问题有什么关系?

  1.解不等式5x+6>3x+10.

  2.当自变量x为何值时函数y=2x—4的值大于0?

  教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.

  由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,?求自变量相应的取值范围.

  问题2:作出函数y=2x—5的图象,观察图象回答下列问题:

  (1)x取何值时,2x—5=0?

  (2)x取哪些值时,2x—5>0?

  (3)x取哪些值时,2x—5<0?

  (4)x取哪些值时,2x—5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

  象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题3:用画函数图象的方法解不等式5x+4<2x+10

  设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,?自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.

  学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:

  方法一:原不等式可以化为3x—6<0,画出直线y=3x—6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x—6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4?上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,?所以不等式的解集为:x<2.

  以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这

  种函数观点认识问题的方法,对于继续学习数学很重要.

  三、巩固练习

  1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.

  2.利用图象解出x:

  6x—4<3x+2.

  [解]1.(1)方法一:作直线y=3x+8的'图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

  方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

  (2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的函数值都小于2.所以自变量x的取值范围是x<—2.

  方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的取值范围是x<—2.

  2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.

  方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.

  四.随堂练习

  1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

  2.利用图象解不等式5x—1>2x+5.

  五.课时小结

  本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

  六.课后作业

  习题14.3─3、4、7题.

  七.活动与探究

  a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

  教学反思:

  本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

  个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

一次函数教案5

  教学目标

  (一)知识认知要求

  1、认识一元一次方程与一次函数问题的转化关系;

  2、学会用图象法求解方程;

  3、进一步理解数形结合思想;

  (二)能力训练要求

  1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

  2、训练大家能利用数学知识去解决实际问题的能力。

  (三)情感与价值观要求

  体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

  教学重点与难点

  1、理解一元一次不方程与一次函数的转化及本质联系。

  2、掌握用图象求解方程的方法。

  教学过程

  一、提出问题

  (1)方程2x+20=0;(2)函数y=2x+20

  观察思考:二者之间有什么联系?

  从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值

  从形上看:函数y=2x+20与x轴交点的.横坐标即为方程2x+20=0的解

  根据上述问题,教师启发学生思考:

  根据学生回答,教师总结:

  由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

  二、典型例题:

  例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

一次函数教案6

  教学目标:

  ⒈经历一般规律的探索过程、发展学生的抽象概括思维能力

  ⒉理解一次函数和正比例函数的概念,以及它们之间的关系,《一次函数》教案。能根据所给条件写出简单的一次函数表达式。

  ⒊通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  教学重点:

  1.一次函数、正比例函数的概念及关系。

  2.会根据已知信息写出一次函数的表达式。

  教学难点:会根据已知信息写出一次函数的表达式。

  教学方法:引导学生自学法、互动学习法、启发讨论式。

  教具准备:多媒体课件(补充练习6.2A)

  教学过程:

  一、导入新课

  上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。在现实生活中有许多问题都可以归结为函数问题。大家能不能举一些列子呢?

  二、推进新课

  复习函数的概念及方程,接下来我们要从最简单而重要的`一种函数讲起,到底是什么样的函数请看P182引例和做一做

  1、P182引例:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:

  x/千克012345 y/厘米33.544.555.5

  (2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、P182做一做

  某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

  (1)完成下表:

  汽车行驶路程x/千米050100150200300

  油箱剩余油量y/升

  你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)

  3、一次函数,正比例函数的概念

  上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式,教案《《一次函数》教案》。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  小练:下列函数中,y是x的一次函数的是

  ①y=x-6;②y=;③y=;④y=7-x;⑤

  4、例题讲解

  P183例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?

  ①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

  ②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

  ③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)

  [(1)y=60x,y是x的一次函数,也是x的正比例函数;

  (2)y=πx2,y不是x的正比例函数,也不是x的一次函数;

  (3)y=50+2x,y是x的一次函数,但不是x的正比例函数]。

  例2:当k=时,是一次函数

  P183例3:我国现行个人工资、薪金税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税…如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-800)×5%=18(元)

  ①当月收入大于1600元而又小于2100元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。

  ②某人某月收入为1760元,他应缴所得税多少元?

  ③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?

  分析:对于③应要注意19.2是否在范围之内

  (1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);

  (2)当x=1760时,y=0.05×(1760-1600)=8(元);

  (3)当x=2100时,y=0.05×(1300-1600)=25(元),25 19.2,因此本月工资少于2100元,设此人本月工资是x元,则0.05×(x-1600)=19.2,x=1984。

  三、课堂练习

  1、随堂练习

  (1)解:y=2.2x,y是x的一次函数,也是x的正比例函数。

  (2)解:y=100+8x,y是x有一次函数。

  2、补充练习

  课件显示6.2A 1、见下表:

  x-2-1012…

  y-5-2147…

  根据上表写出y与x之间的关系式是:_,y是否为x一的次函数?y是否为x有正比例函数?

  2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。

  [①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

  四、课后小结

  1、一次函数、正比例函数的概念及关系。

  2、能根据已知简单信息,写出一次函数的表达式。

  五、课后作业

  P186:1,2 MSN

一次函数教案7

  教材分析

  在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

  1 .注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.

  2. 注重“数学结合”的教学

  数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

  ( 1 )让学生经历绘制函数图象的具体过程。

  ( 2 )切莫急于呈现画函数图象的简单画法。

  ( 3 )注意让学生体会研究具体函数图象规律的方法。

  知识技能

  目标

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会选择两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质.

  过程与方法目标

  1、通过研究图象,经历知识的.归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度目标

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  教学重点

  一次函数的图象和性质。

  教学难点

  由一次函数的图像归纳得出一次函数的性质及对性质的理解。

一次函数教案8

  教学目标

  1.知识与技能

  理解一次函数与一元一次不等式的关系,发展学生的认知体系.

  2.过程与方法

  经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.

  3.情感、态度与价值观

  培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.

  重、难点与关键

  1.重点:一次函数与一元一次不等式的关系.

  2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.

  3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围.

  教具准备

  采用“问题解决”的'教学方法.

  教学过程

  一、回顾交流,知识迁移

  问题提出:请思考下面两个问题:

  (1)解不等式5x+6>3x+10;

  (2)当自变量x为何值时,函数y=2x-4的值大于0?

  学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.

  教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

  思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,这条直线上的点在x轴的上方,即这时y=2x-4>0.

  问题探索

  教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

  学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.

  师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.

  教学形式师生互动交流,生生互动.

  二、范例点击,领悟新知

  例2用画函数图象的方法解不等式5x+4<2x+10.

  教师活动激发思考.

  学生活动小组合作讨论,运用两种思维方法解决例2问题.

  解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.

  解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.

  评析两种解法都把解不等式转化为比较直线上点的位置的高低.

  三、随堂练习,巩固深化

  课本P216练习.

  四、课堂,发展潜能

  用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.

  五、布置作业,专题突破

  课本P129习题14.3第3,4,7,8,10题.

一次函数教案9

  ●教学目标

  (一)教学知识点

  1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.

  2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.

  (二)能力训练要求

  能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.

  (三)情感与价值观要求

  能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.

  ●教学重点

  根据所给信息确定一次函数的表达式.

  ●教学难点

  用一次函数的知识解决有关现实问题.

  ●教学方法

  启发引导法.

  ●教具准备

  小黑板、三角板

  ●教学过程

  Ⅰ.导入新课

  [师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.

  Ⅱ.讲授新课

  一、试一试(阅读课文P167页)想想下面的.问题,数学教案-确定一次函数的表达式。

  某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。

  (1)写出v与t之间的关系式;

  (2)下滑3秒时物体的速度是多少?

  分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析

  式求出待定系数即可.

  [师]请大家先思考解题的思路,然后和同伴进行交流.

  [生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.

  解:由题意可知v是t的正比例函数.

  设v=kt

  ∵(2,5)在函数图象上

  ∴2k=5

  ∴k=

  ∴v与t的关系式为

  v= t

  (2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.

  解:当t=3时

  v=×3= =7.5(米/秒)

  二、想一想

  [师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.

  [生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;

  第二步设函数的表达式;

  第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.

  第四步解出k,b值.

  第五步把k,b的值代回到表达式中即可.

  [师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?

  [生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.

  三、阅读课文P167页例一,尝试分析解答下面例题

  [例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的

  一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.

  [师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.

  [生]没有画图象.

  [师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?

  [生]因为题中已告诉是一次函数.

  [师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.

  [生]解:设y=kx+b,根据题意,得

  15=k+b, ①

  16=3k+b. ②

  由①得b=15-k

  由②得b=16-3k

  ∴15-k=16-3k

  即k=0.5

  把k=0.5代入①,得k=14.5

  所以在弹性限度内.

  y=0.5x+14.5

  当x=4时

  y=0.5×4+14.5=16.5(厘米)

  即物体的质量为4千克时,弹簧长度为16.5厘米.

  [师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.

  [生]它们的相同步骤是第二步到第四步.

  求函数表达式的步骤有:

  1.设函数表达式.

  2.根据已知条件列出有关方程.

  3.解方程.

  4.把求出的k,b值代回到表达式中即可.

  四.课堂练习

  (一)随堂练习P168页

  (题目见教材)

  解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)

  (题目见教材)

  解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。

  五.课时小结

  本节课我们主要学习了根据已知条件,如何求函数的表达式.

  其步骤如下:

  1.设函数表达式;

  2.根据已知条件列出有关k,b的方程;

  3.解方程,求k,b;

  4.把k,b代回表达式中,写出表达式.

  六、布置作业:P169页1、2

  数学教案-确定一次函数的表达式

一次函数教案10

  一、教学目标

  知识与技能目标

  1、继续巩固一次函数的作图方法;

  2、结合一次函数的图像,掌握一次函数及其图像的简单性质。

  过程与方法目标

  1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

  2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

  情感与态度目标

  经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。

  二、教材分析

  本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。

  教学重点:结合一次函数的图像,研究一次函数的简单性质。

  教学难点:一次函数性质的应用。

  三、学情分析

  学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。

  四、教学过程

  (一)做一做

  在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。

  (二)议一议

  上述四个函数中,随着x值的.增大,y的值分别如何变化?

  学生:有的在增大,有的在减小。

  师:哪些一次函数随x的增大y在增大;哪些一次函数随x的增大y在减小,是什么在影响这个变化?

  学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。

  师:当k>0时,一次函数的图象经过哪些象限?

  当k<0时,一次函数的图象经过哪些象限?

一次函数教案11

  教学目标: 1。知道一次函数与正比例函数的意义

  2。能写出实际问题中正比例函数与一次函数关系的解析式。

  3。掌握“从特殊到一般”这种研究问题的方法

  教学重点:将实际问题用一次函数表示。

  教学难点:将实际问题用一次函数表示。

  教学方法:讲解法

  教学过程:

  一。 复习提问

  1。 什么是函数?请举例说明。

  2。 购买单价是0。4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么?

  3。 在上述式子中变量是谁。常量是谁?自变量又是谁?

  二。 讲解:

  在前面我们遇到过这样一些函数:

  y=x s=30t

  y=2x+3 y=-x+2

  这些函数都使用自变量的一次式来表示的.,可以写成 y=kx+b 的形式

  一般的,如果y=kx+b(k , b是常数,k≠0), 那么y叫做x的一次函数。

  特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数。

  例一 :

  一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒。

  (1) 求小球速度v (米/秒)与时间t(秒)之间的函数关系式;

  (2) 求3。5秒时小球的速度。

  分析:v与t之间是正比例关系。

  解: (1)v=2t

  (2)t=3。5时,v=2×3。5=7(米/秒)

  例二: 拖拉机工作时,油箱中有油40升。如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式。

  分析:t小时耗油6t升,从原油油量中减去6t,就是余油量。

  解:Q=40 - 6t

  课堂练习:

  P96 1 ,2

  小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

  作业:P97 1。2。3。4。

一次函数教案12

  关键词:幂函数;案例设计;创新

  一、中职幂函数教学单元的定位

  1.课程定位

  2.教案设计理念

  在中职数学教学过程中,绝大多数执教教师发现,若没有数学认知和自我总结的实践过程,而是仅仅以结论提供方式的记忆式学习,往往容易造成学生解题时的困惑,这与其尚未真正掌握幂函数规律密切相关,故而本教案设计的核心原则在于避免以往的“告诉”式,而是以建构的理念,还学生以知识认知与理解掌握的主动权,鼓励学生在自我探究的过程中发现幂函数基本规律及其性质、属性,并同时结合教师的引导对知识进行确认与巩固,通过反复的、源自于幂函数性质规律各角度的练习,进行幂函数深入学习。“授人以渔”的指导思想让学生学会知识摸索与探求的基本学习规律和技巧。

  3.教学基本情况分析

  本节课程的授课对象为中职学生,基于其对函数一定量的基本概念与性质认知,函数研究思路与方法也有所熟悉,幂函数课程是结合并运用已知指数和对数函数概念、性质和图象及结题运用,开展教学的知识模块。但由于刚步入中职,对初中学习阶段的各种学习特点及习惯仍有所保留,而且能力和思维模式的发展仍属于转折成型期,所以教师须把握幂函数教学创新的体验、契机,对中职学生进行数学理性思维和类比等思维的培育,并获得幂函数教学的良好效果。

  4.教材要求与目标设定

  幂函数作为改革教材的重点内容,在现行中职类专业教学的数学教材中处于指数函数与对数函数之后,主要目的在于比对上述函数的复杂性之后,鼓励学生结合指数函数、对数函数进行归纳分析总结。

  本教案所涉课程的主要内容为幂函数,主要以结合实例引用概括幂函数概念,在学生了解识记幂函数结构特征的基础上,了解其与指数函数和对数函数的区别,并通过特殊简单函数的图象比对进行观察、分析与总结。教学目标为结合一次、二次和指对函数的特性对比,培养学生数学的对比结合和相应的分析归纳能力,并提升其数形结合、特殊上升到一般、归纳类比的逻辑思维。

  二、教学案例实施过程

  1.以学生业已熟悉的各类简单函数的引出,进行学生函数思维的重新建立,如运用(1)p=k,(2)S=x2;(3)V=ax3;(4)r=■;(5)v=st-1提问学生上述函数在其“形状”变化上的一些共同特点,进而引出y=x,y=x2,y=x3,y=■,y=■,y=■,再结合一定时间的学生讨论,引导学生归纳幂函数的变化特征为以x为自变量,a为特定常数作为其指数所构成的y=xa,这一函数称为幂函数。经过上述幂函数的引入教学,学生被自然地带入对于类似函数的.思考研究中,从而获得一定程度的概念性认知。而且该方法突出了本教案设计的“用教材而不是教教材,要创造性地使用教材”的教学创新原则,尊重教材的同时适当创新教材展示与教学设计。

  2.基于幂函数引入的课堂导入,使学生获得幂函数理解认知,并提示指出幂函数结构中的x自变量位置,并以其与指数函数的位置进行直观对比,从而将复杂的幂函数与指数函数结构易混淆问题变为简单且不易遗忘的形状识记。同时,可以配合一定量的各种幂函数举例辨别,分辨并总结各类幂函数,在此基础上又对幂函数的形式进一步探析。接着,对幂函数的一般形式进行进一步探析。当然基于课程的教案创新改革必须秉持一贯的教学目标及其实施,也不能一味地进行脱离教学规律的教法创新。

  总之,作为逐步发展的教学教法创新过程中的教学革新,都需要广大教学工作者充分结合学生现实、教材现实、教学现实、教育发展现实,中职数学中的幂函数不能以简单的给定义、告性质、做练习的模式进行,更应充分结合学生特点及其自有知识结构体系与认知能力特性,进行综合性创新。

一次函数教案13

  在数轴上除了有-1,-2,0,1,2,…有理数之外还存在着无理数,如以坐标圆点为顶点,以单位“1”的长度作正方形,则对角线的长度为,再以0点为圆心,对角线的长为半径画弧线与数轴交于点B,所以B点表示的数就是无理数,以此类推,我们还可以得到,-,…等更多的无理数,因此有理数和无理数就把数轴上的所有点填满了,所以实数与数轴上的点是一一对应的关系。并且数轴上的数从左到右逐渐增大

  案例二:如图(2)在数轴上:

  分析:在案例二的第二个问题中,是把形化为数,这是解决此类问题的突破口,也就是解题的瓶颈,只有利用形与数的完美结合与互化才能解决此类问题,体现了数形结合的思想价值。

  1.2相反数与绝对值

  相反数是指只有符号不同的两个数互为相反数,而绝对值是指一个数离开坐标原点的长度单位(注0的相反数与绝对值都是它本身),在相反数与绝对值的数学过程中,如果采用数形结合的方法进行教学,那么取得的教学效果是事半功倍。如图(2)中,1的相反数是-1,-2的相反数是2,的相反数是-,4的相反数是-4,1=1 -2=2 -3=3

  由此我们还可以得出结论:①数轴上的数从左到右逐渐增大,②对于负数绝对值越大的数反而越小,③负数的绝对值等于它的相反数,正数的绝对值等于它本身,④互为相反数的两个数绝对值相等。在案例一,案例二中,如果我们只采用“数”的方法讲解,而不采用“数与形”结合的方式,学生是很难理解的,只有把数与形互相结合起来,真正做到直观化,形象化,学生就能够一目了然,由此我们还可以把问题由特殊化转为一般化,就可以很轻松的得到结论

  解。反之,如果在平面直角坐标系中,知道了两条直线L1和L2的交点坐标,也可以根据交点坐标得出相应的方程组。

  3.解决一元一次不等式(组)和一次函数结合的问题

  在近几年中,考察不等式的题型在原有的填空题,选择题,解答题,求不等式组的解集的基础上有了新的突破。特别是在不等式与方程结合的实际方案优化设计问题,不等式和一次函数结合方面考察的较多。解决这类问题的关键是采用数形结合的思想,把“数”化为“形”,使复杂问题简单化。

  案例5.已知直线经过点A(-1,-2)和点B(-2,0),直线经过点A,求不等式的解集。

  解析:如果采用单一的“数”的形式来解决这类问题(即用代数的方法),需要把点的坐标代入函数关系式中,用“待定系数”法求出函数关系式,再把函数关系式代入不等式中组成不等式组,最后求出不等式组的解集。虽然这样处理问题,能够得到最终的答案,但是做起来感觉比较繁,又会浪费我们许多宝贵的时间。如果采用“数形结合”的办法来解决,会起到把复杂问题简单化,起到立竿见影,事半功倍的效果。

  解析:⑴建立平面直角坐标系,作出函数图象,如图(5)所示。

  ⑵由函数图象可知:函数是减函数y随x的增大而减小,并且当x>-2时y-2时

  x0.即x0

  ⑶函数是正比例函数,y随x的增大而增大。当x>O时y>O,即2x>O,当x

  ⑷函数与相交于点A(-1,-2),都与直线x = -1相交,并且在直线x = -1的左侧是>2x,在x = -1的右侧是

  因此不等式的解集是-2

  由函数图象我们还以得到不等式的解集是-1

  这样,我们就把复杂的问题简单化,从而起到优化解题途径的目的,做到“数”与“形”的互变。让学生产生豁然开朗的感觉,不仅提高了学习效率,还培养了学生的学习兴趣。

  4.以形助数解决函数问题

  在初中的教学内容中,函数包括一次函数,反比例函数和二次函数。在教学过程中数形结合的教学方法是解决函数问题的关键,要学会从“数”分析到“形”,由数的特征想到形的特征,又由形的特征想到数的特征,能够变抽象思维为形象思维。这样有助于把握数学问题的本质,做到由数思形,以形想数。

  4.1解决一次函数问题

  一次函数是历年学业水平测试命题的重要考点,尤其是最近几年,越来越受到重视,考查这部分的试题不仅数量多,而且题型新,一些与现实生活密切相关的应用题、阅读题、开放探索题等层出不穷,解决这类问题的关键是利用数形结合的办法。

  案例6.如图(6)所示:小虹准备到甲、乙两商场去应聘,下图中L1,L2分别表示了甲、乙两商场每月付给员工的工资y1和y2(单位:元)与销售商品的件数x(单位:件)的关系。

  ⑴根据图象分别求出y1,y2与x的函数关系式。

  ⑵根据图象直接回答:如果小虹决定去应聘,她可能会选择甲商场还是乙商场?

  解:(1)设L1的函数关系式为y1=k1x,把(40,600)带入y1=k1x中,得40k1=600,解这个方程,得k1=15,所以y1与x的函数关系式为y1=15x.

  设L2的函数关系式为y2=k2x+b.把(0,400)与(40,600)带人y2=k2x+b中,得。解这个方程组,得。所以y2与x的函数关系式为y2=5x+400

  (2)当销售件数大于40件时,选择甲商场

  当销售件数小于40件时,选择乙商场

  当销售件数等于40件时,选择去甲商场或乙商场都一样。

  4.2解决反比例函数与一次函数结合的问题

  反比例函数也是学业水平测试的必考内容,近年来备受青睐。反比例函数的'图象与性质、解析式的确定及实践应用都是热点。在解答题中主要考查反比例函数与一次函数结合为主,难度处于低、中档次。

  案例7.如图(7)所示:已知一次函数y1=x+2与反比例函数y2=图象相交于A,B两点,A点坐标为(1,3)。

  ⑴试确定B点的坐标及反比例函数的表达式。

  ⑵若y1>y2时,求x的取值范围

  解:⑴反比例函数y2=的图象经过点A(1,3)

  ,k=3

  反比例函数的表达式为

  由消去y,得x2+2x-3=0,即(x+3)(x-1)=0

  x=-3或x=1,可的y=-1或y=3

  于是或

  点B在第三象限,点B的坐标为B(-3,-1)

  ⑵要求y1>y2时,x的取值范围,即x+2> 。此时对于初中的学生来说,要用代数的方法解决这个问题是很难的,可以说是无法解出的。要解决这个问题,我们只能借助函数图象,采用数形结合的办法来解决,使问题简单化。

  解析:①分别过一次函数和反比例函数图象的交点作x轴的垂线,分别与x轴相交于-3和1(即直线x=-3和直线x=1,如图(7)中的虚线所示)。②分别以直线x=-3和直线x=1的左右来区分是一次函数的值大,还是反比例函数的值大。而在直线x=-3和直线x=1的左右两边,什么函数图象在上,就是该函数的函数值大。③根据函数值确定自变量的取值范围(注:自变量x不能取到0,要与y轴为分界线)

  因此y1>y2时,x的取值范围就只能在直线x=-3和直线x=1的右边来确定。因为在直线x=-3和直线x=1的右边都是一次函数的图象在上,所以y1>y2时,自变量x的取值范围是-3

  4.3解决二次函数的问题。

  二次函数是初中水平测试命题的热点,各种题型,各档次试题都会涉及。特别是与实际生活相关的阅读理解题、实际应用题、探索题在最近几年中更为突出。解决这类问题的关键是利用二次函数的图像与性质,建立二次函数模型,用数形结合的思想方法进行。

  5.解决概率的问题。

  例8.在一个不透明的口袋里装有5个分别标有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同。现从口袋里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标。那么点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率是多少呢?

  解:⑴画树形图表示点P的所有可能情况

  开始

  ⑵点P的坐标有P1(1,1),P2(2,4),P3(0,0),P4(-1,1),P5(-2,4).其中点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的点只有P1(1,1),所以点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率为。

  6.教学过程中要注意数学思想的培养

  中学阶段的数学基本思想包括分类讨论的思想,数形结合思想,变换与转化的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想等等,中学数学中处处渗透着基本数学思想,如果能使它落实到学生学习和教学上,就能够发展学生的数学能力。其中数形结合思想使一种很重要的思想,它贯穿于整个初中数学的教学内容中。对中学数形结合思想的研究有助于我们更好的掌握中学数学知识,提高解题能力,尤其在初三系统复习中,如果教师利用好“数形结合”思想来培养学生的学习兴趣,那么提高学习效率,提高教学成绩是有很大帮助的,我们就能在学业水平测试中取得优异的成绩。

一次函数教案14

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的.表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

一次函数教案15

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的.长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  [设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  2、旅游问题

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  2、布置作业

  [设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

  四、教学设计反思

  1、贯穿一个原则——以学生为主体的原则

  2、突出一个思想——数形结合的思想

  3、体现一个价值——数学建模的价值

  4、渗透一个意识——应用数学的意识