首页 申请书推荐信邀请函通知工作总结工作计划策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教学反思>分数与除法教学反思

分数与除法教学反思

时间:2024-11-29 07:13:55 教学反思 我要投稿

分数与除法教学反思范例15篇

  作为一位优秀的老师,教学是我们的工作之一,教学反思能很好的记录下我们的课堂经验,来参考自己需要的教学反思吧!下面是小编为大家收集的分数与除法教学反思,欢迎阅读与收藏。

分数与除法教学反思范例15篇

分数与除法教学反思1

  《分数除法(三)》是北师大版小学数学五年级下册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。教学中,首先给学生提供探究的平台,让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对 “分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

  1、从已有知识入手,激发学生求知欲。在这节课的教学组织中,教师从学生已有的基础知识入手,很自然的将复习铺垫中的`乘法应用题过渡到分数除法应用题。将学生的整个学习活动围绕“操场上的活动”这一活动情境步步展开。这样既有一定的挑战性,又能激起学生学习的兴趣,增强学生的求知欲。

  2、充分发挥了教师主导作用和学生的主体作用。本节课从新知的引入,到问题的提出、数量关系的分析、问题的解决,在整个学习活动中学生的学习空间是宽阔的。在教学中,教师通过学生同伴间相互说说或在组内讨论,然后集体交流,有效地引导学生,起到了组织者、指导者的作用。在给学生思考的空间、学习的时间和交流机会的同时,学生主体作用得到了发挥,极大地鼓舞了学生,使学生个人的成功感获得了极大的满足,有力的促进了学生的数学思维及能力发展,也更激发他们去主动学数学。

  3、练习设计具有层次性。巩固练习是帮助学生进一步掌握所学新知的过程。教学中,教师同样应注意巩固练习设计的层次性,使不同的学生进行不同的练习,这样,即满足了吃不饱学生的需求,同时又能使中下学生获得成功感。

  4、学生习惯养成较好,学习能力较强。在每一项活动中,学生都能积极的投入到学习中,且学生倾听、交流等习惯养成较好;此外小组合作组织有序、实效性强,学生语言表达完整、精炼,归纳、总结能力较强。

分数与除法教学反思2

  本课主要学习用方程解决简单的分数的实际问题,并巩固分数除法的计算方法。教材中提供了一个主题图,这个主题图为学生提供了丰富的数学信息,创设了问题情境,让学生对分数除法应用题这个在小学阶段历来的教学难点提供了学习的方法与帮助。特别是在解决分数乘除混合问题时,学生是难以判断是用乘法还是用除法解答的,为了突破这个难点,我鼓励学生用方程解决除法的问题,我充分利用这幅主题图,让学生大胆地提出问题,鼓励学生以分数乘法的知识进行新旧知的学习迁移。反馈时,学生出现多种解决问题的策略,我做了适时的引导,鼓励学生用方程解决此类问题,但也有学生选择用除法计算,我及时引导学生做好分析,并借助线段图的功能理清思路。对学习能力强的学生我提出用两种方法解决这个问题,虽然题目并不难,但要加强对数量关系的分析,鼓励学生找出问题情境中的.数量关系,进一步理清数量关系,避免学生机械套用题型的情况,引导学生根据情境中的数量关系和运算的含义解决问题。

  办法想了很多,但一些学困生还是不理解如何解题,还得想办法!

分数与除法教学反思3

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的`此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法,这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

分数与除法教学反思4

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系,解决一些简单的问题。

  在引入课题之前,先复习旧知。课件呈现几道简单的口算题,以唤醒学生对整数除法的.记忆,为探索新知做铺垫。在探索新知时,课件呈现猪八戒化斋的故事,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:猪八戒又化了3张饼,每人分多少张?学生又拿出学具自主探究,再演示。学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数与除法教学反思5

  夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的'意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,不足之处:

  学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。

  改进措施:

  1。加强求一个数是另一个数的几分之几的列式训练。

  2。在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。

分数与除法教学反思6

  首先通过课前谈话解决了分数除法的意义。接下去重点来研究分数除以整数的计算方法,我出示了这样一道例题:布艺兴趣小组的同学要用米的花布给小猴做衣服。如果做背心,可以做3件,你能提出什么问题?学生们一致的提出了“做一件背心需要花布多少米?”的问题。问题一出,学生马上就把算式列出来了,÷3,可是这个算式应该怎么计算呢?通过四人小组讨论合作,最终想出了好几种方法。

  法1:÷3=0.9÷3=0.3(米)(把分数化作小数,然后再计算)

  法2:÷3=(×)÷(3×)=(米)(运用分数的基本性质)

  法3:÷3=×=(米)(因为把整块布看作一个整体,平均分成三份,其中的一份就占了整块的,所以直接乘以)

  法4:÷3==(米)(把分子平均分成3分,分母不变)

  把三种方法整理出来后,他们感觉不出来哪种方法简便。于是我接着把改为,让他们再用自己发现的方法进行计算。结果学生们发现用方法1时,化成小数时除不尽;用方法2太麻烦;用方法4时,11除以3,除不尽;还是用方法3最简便。

  随后,我让他们观察、讨论、交流÷3=×=(米)与÷3=×=(米)这两道题的计算方法,学生们发现除以整数等于乘以整数的倒数。

  第二环节解决一个数除以分数的计算方法。

  我把例题改为:布艺兴趣小组的同学要用米的花布给小猴做衣服,每件衣服要用米,能给几只小猴子做衣服?有了第一题的基础,大部分学生马上就想到÷=×=3(只),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你把改为的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把米换成1米,你认为又该怎么计算呢?学生们说还是乘以后面的.数的倒数。

  最后总结:同学们,从这几题中你发现了什么?——分数除法的计算方法学生们脱口而出。

  第三环节,做一些练习。

  在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,记得牢固,教师教的快乐,教的放心。

分数与除法教学反思7

  本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。在这节课的教学中,做得比较好的方面是:1。教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。2。在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。

  3、注意引发学生的数学思考,促进学生主动沟通了知识间的.内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。我觉得有以下几方面值得我去思考:

  一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

分数与除法教学反思8

  (看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论~于华静)

  最近一段时间,从分数的乘法到分数的`除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:

  1、一找、二看、三判断

  分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。

  2、弄清对应量、对应分数、单位‘1’

  教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。

  3、线段图、数量关系、关系转化

  (1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。

  (2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。

  (3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。

  总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多

  加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。

分数与除法教学反思9

  该信息窗选取了孩子们比较熟悉的做书信袋和给洋娃娃做小裙子的素材,并展现了一些相关的信息。布艺兴趣小组的同学要用2米布做书信袋,一个小书袋需1/5米,一个大书信袋需要2/5米;用4/5米布给洋娃娃做小裙子,做一条需要4/25米。通过让学生提问题,引出对一个数除以分数计算方法的探索。

  教材中第一个红点标示的问题,借用信息窗的信息,让学生提出问题:2米布可以做多少个小书袋?从而引出整数除以分子是1的分数的学习。解决这个问题,教材提供了直观图,分析1里面有5个1/5,2里面有(25)个1/5,即10个1/5。通过21/5=25=10,引导学生发现2除以1/5等于2乘1/5的倒数。

  第二个红点标示的问题:2米布可以做多少个大书信袋?也是解决整数除以分数的问题,但分数的分子不为1。同第一个红点问题不同的是,2里面有多少个1/5,学生比较容易理解,但是2里面有多少个2/5,是先看2里面有10个1/5,然后把每2个1/5看作一份,10个1/5就看作5份。在此基础上,让学生发现2除以2/5就等于2乘5的倒数。

  在两个问题都解决之后,引导学生总结:怎样计算一个数除以分数呢?由于整数可以看作分母是1的分数,所以一个数除以分数的计算方法也包括分数除以整数的计算方法。

  教材中绿点标示的问题:4/5米布可以做几条裙子?不再借用直观图,而是让学生利用前面总结的方法来解决问题,教材在展示题目后,给了学生一定程度的提示,让学生自行完成计算过程。

  本信息窗建议课时数:2课时。第一课时为新授课,教学信息窗、合作探索及自主练习中的3、4、5、6、7题;第二课时为练习课,主要处理自主练习中的其他题目。

  对第一课时的教学提出如下建议

  1、创设情境,提出问题。

  教学时,可以接着第一个信息窗的情境介绍,引入学生了解图中的信息,梳理信息,提出数学问题。学生提问题的过程,是搜集、整理、分析和处理信息的过程。由于学生的个性差异,提出的问题可能比较零乱,此时,教师要注意分类整理,板书出本节课所需要的数学问题。

  2、合作探索,解决问题。

  (1)独立思考。

  可以鼓励学生独立列出算式,想办法算出得数。即使学生在计算时有困难,老师也不要做过多的提示,重要的是给学生自主探索的空间,经历思考的过程,以培养学生的创新意识。之所以如此,是因为没有独立思考,就谈不上创新。

  (2)组织交流,解决问题。

  在独立思考的基础上,可以组织学生小组交流和组间交流。在小组交流的时候,教师要作为一个参与者参与到小组活动中去,及时的收集信息。根据班级的实际情况,如果学生在解决问题的时候,困难较大,教师也可以引导学生画出直观图,组织学生观察、讨论,找到解决问题的方法。

  解决这个问题的关键是让学生找到明确1/5米是把1米平均分成5份,每份就是1/5米。通过分析可以明确1米里有5个1/5米,2里面有(25)个1/5米。所以21/5=25。学生可能对21/5和25相等有异议,教师应引导学生从意义上,寻找相等的理由。学生得出结果后,可以引导学生观察由21/5到25的变化,5和1/5互为倒数,2除以1/5等于2乘1/5的倒数。

  在解决第一个问题的基础上,教师可以出示教材中的第二个红点标示的问题:2米布可以做多少个大书信袋?让学生试做,学生在交流的时候,教师要善于倾听,根据学生的情况抓住时机,适时做有针对性的点拨。

  第二个红点部分解决的是整除除以分数,且分数的分了不是1的除法。教学时,可让学生自己根据信息列出算式,然后让学生借助直观图示独立分析探究。学生可能会根据前面的分析得出22/5=252,教师接着引导252=251/2=22/5。如果学生独立探究有困难,教师就可以通过直观图,让学生分析,然后通过对比发现2除以2/5就等于2乘2/5的倒数。对于这个问题,要将教学重点放在算理的理解与计算方法的探索上。给学生留有尽可能大的探索空间,使之能运用不同的方法进行推导,体会转化的思想方法。

  在此基础上,引导学生观察、比较、分析215、225在计算方法上的相同之处,最后归纳概括出:一个数除以分数,等于这个数乘分数的倒数。

  绿点问题,4/5米布可以做几条裙子?可以引导学生利用已学的数量关系,列出算式4/54/25,并独立解决,交流中可以让学生做简单分析。

  3、总结推广,应用问题。

  组织学生对前面解决的三个问题的过程进行反思和回顾,找出其共同的.特点,引导学生把一个数除以分数的普通方法总结出来,包括分数除以整数也可以把整数看作分母是1的分数,所以一个数除以分数的计算方法对分数除以整数同样适用,从而把分数除法的计算方法统一起来,使学生经历从具体到抽象概括的过程。如果学生总结有困难,也可以放在自主练习之后安排总结计算分数除法的一般方法。

  关于自主练习。

  第1题是分数口算的综合练习,有加减法,也有乘除法。练习时,要培养学生认真仔细的学习习惯,一看、二想、三计算,先看清运算符号,想清算法,再进行口算。教师也可以适当补充类似的练习,以逐步提高学生的口算速度。

  第2题,是一道分数除法的实际应用的题目,学生对列式可能会有困难,可以让学生把分数换成整数来理解数量关系,然后再解答。这道题有两种情况,第一题是分数除以整数,第二小题是分数除以分数。练习时,要先让学生解决第一小题一根蜡烛,2小时燃烧了9/5分米,1小时燃烧了多少分米?,让学生明确:燃烧总量时间(小时)=每小时的燃烧量,在学生明确数量关系的基础上,再来独立列式解决第二小题,学生就会比较容易分清谁做被除数,谁做除数。最后在全班交流。

  第3、5题属于仿例练习,建议让学生独立完成后再交流。

  第6题,可以让学生根据速度=路程时间的关系,列出算式。

  第7题,火眼金睛辨对错。教材安排的三个题目中前两个是错误的,主要针对学生计算中易错的地方来设计的。使用中不但要让学生改正,而且要让学生讲清错因,然后引导学生总结,计算分数除法应注意的事项。

  第8题是一道实际应用的题目,练习时要引导学生思考:怎样比较谁走得快?让学生明确:谁的速度快谁就走得快。所以首先要利用路程时间=速度算出每人的速度,然后进行比较。

  第9题是一道找规律的题目。旨在打破学生的一种思维定势:长期的整数除法运算使学生认为商一定小于被除数。这个定势在学习小数除法时已得到修正。因此,可以先让学生自己解答,再讨论,如情况允许,最好让学生讨论为什么出现这种现象,最后得出答案:如果除数小于1,商就大于被除数;如果除数大于1,商就小于被除数;如果除数等于1,商就等于被除数。从而加深对除法算式具体含义的理解。

  第10题属于上一单元学习的旧知。先让学生自己解答,然后交流,引导学生注意选择有用的信息。

  第11题,可根据学生熟知的数量关系列出正确算式,计算出结果后再组织交流。

分数与除法教学反思10

  第一部分:

  第一环节,教师说明人体内水分的含量,学生知道后,只出示“儿童的体内的水分约占体重的4/5”这一条信息,让学生观察,说明题目中包含了哪两个量,并用数量关系式表示出它们之间的关系。引导学生得出:体重×4/5=水分的重量

  教师口头出示:一个儿童的体重为45千克,让学生计算出他体内的水分有多少千克?学生很容易就口答出了答案。之后我板书:小明体内的水分重20千克,小明的'体重是多少千克?让学生尝试解决。结果有5名学生选择用除法直接计算,其他学生选择用方程解决。

  在教学后,我引导学生分析本节课所学的解决问题知识与以前学习的有何不同,引导学生找出这类问题的特点,总结出当单位1是未知时,可以直接用算术方法,也可以用方程解决。

  第二部分:

  在学生计算出小明的体重后,我再出示另一个条件“小明的体重占爸爸体重的7/15,爸爸的体重是多少千克?”学生独立解决,本来解决第一个问题我感觉还蛮顺利的,可是在此题计算中我尝到了失败的滋味,学生找数量之间的关系,选择用除法解决都很费力。列算式为25×7/15者有6个同学,列方程为25X=7/15的有2人。我很是失望,我甚至不知道怎么教学这些知识了,最终我以“下节课再说”来结束了这几课。

  下课后我在反思,也和平行班的教师谈论,她们也感觉有些困难,“已知一个数的几分之几是多少,求这个数”的问题,如果用算术方法解决,需要进行逆向思维,教材呈现的是顺向思考,让学生根据分数乘法的意义,找到等量关系列出方程解答。可是在教学中我感觉出来学生对于数量关系的理解个别同学很有困难,好像去年教学这部分知识时没有这么困难,我又在思索以前对这部分知识的教学。

  今天我又在另一个班教学这部分知识,基本思路还是和昨天一样。不过经过昨天的思考,我添加了一个课前预习环节:总结我们学习过的分数乘除法解决问题的类型:

  1。求一个数的几分之几是多少的问题。2。已知一个数的几分之几是多少,求这个数的问题。

  让学生举例,其他学生口答问题。在此基础上我才出示以上教学内容,进行教学。结果也还是不能令我满意。我还得继续反思我的这节课。

分数与除法教学反思11

  在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。

  我认为优点体现在:

  一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义;

  二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。

  不足之处是:

  在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容?

  我认为有以下两点值得去深思:

  一、有没有把课堂还给学生?

  课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的`课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识……

  二、如何“还”?

  很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。

  说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。

分数与除法教学反思12

  本单元是对分数除法这一单元所学知识,进行系统整理和复习。通过整理和复习,把前面分散学习的知识加以梳理,整出头绪,加以归纳,提出要点。

  成功之处:

  1.在复习概念方面,主要复习了分数除法的意义和比的意义。通过式子b×3/4=a,明确b的3/4等于a,由b×3/4=a得出a÷3/4= b; a÷b=3/4,a与b的比是3:4,使学生更清晰地感悟乘法与除法,分数与比之间的内在联系。

  2.在复习计算方面,先让学生说一说分数除法的计算方法,使学生明确整数可以看成分母是1的分数,所以不管被除数、除数是整数(0除外)还是分数,都可以把除转化为乘,即除以一个数(0除外),等于乘这个数的倒数。

  3.在复习比的化简方面,通过让学生说出比和除法、分数的关系,化简比的依据,然后完成第3题,结合题目对常用化简方法加以概括总结。

  前后项同乘分母的最小公倍数

  分数比 前后项同时除以它们的最大公约数

  整数比 最简单整数比

  小数比 前后项的`小数点右移动相同位数

  重点强调了化简比和比值的区别:化简比是以比的形式出现,而比值是一个数。

  4.在复习比的应用方面,通过分析数量关系,变换条件让学生感受到分数乘除法形变神不变的内涵。

  六年级有男生60人,( ),女生有多少人?

  (1)女生人数是男生的2/3

  (2)男生人数是女生的2/3

  (3)男生人数比女生多2/3

  (4)男生人数比女生少2/3

  (5)女生人数比男生多2/3

  (6)女生人数比男生少2/3

  通过不同形式的变式练习,使学生体会到只要掌握住数量关系,就能解决问题。

  不足之处:

  1.复习中只注重了基本的练习,但是题型千变万化,学生灵活解题能力欠缺。

  2.对于实际数量和分率的区别,学生容易出现混淆。

  再教设计:

  在分数乘除法应用题中夯实数量关系的分析,用“单位1”已知和未知来进行乘除法的检验和验证。

分数与除法教学反思13

  二、教学目标:1。使学生理解两个整数相除的商可以用分数来表示。

  2。使学生掌握分数与除法的关系。

  三、重点难点:1。理解、归纳分数与除法的关系。

  2。用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程:

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0。5(块)

  (三)教学实施

  1。学习教材第65页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0。3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2。观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3。学习例2 。

  ( 1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2)3 ÷ 4的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3)加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?(表示把单位“1 “平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)

  ( 4)巩固理解

  ①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4。归纳分数与除法的关系。

  ( l)观察讨论。

  请学生观察1÷3 =(块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2)思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3)用字母表示分数与除法的关系。

  老师:如果用字母a 、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5。巩固练习:

  (1)口答:

  ①7÷13==()÷()()÷24=9÷9=0。5÷3=n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的( ),每段长()米。

  解释0。5÷3=是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的()

  ②1米的与3米的一样长。()

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。()

  ④把45个作业本平均分给15个同学,每个同学分得45本的。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的.产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0。5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数与除法教学反思14

  分数除以整数是小学数学中的一个重要知识点,对于学生来说,掌握这个知识点不仅可以提高其数学成绩,还可以帮助其更好地应用数学知识。

  在教学中,我发现学生们对分数除以整数的理解程度参差不齐,有些学生掌握得很好,而有些学生则存在一些困难。导致这种情况的`原因可能是教学方法不够灵活,无法满足不同学生的需求。因此,我在教学中采用了一些创新性的方法,如通过图形、实例、游戏等让学生更好地理解分数除以整数的概念和运算方法。

  此外,在教学中,我还注重鼓励学生提问和讨论,让他们通过思考和交流来更好地理解分数除以整数的理论知识和实际应用。通过这些方法,我相信可以让学生更加深入地理解这个知识点,从而提高其数学水平。

  分数除以整数是重要的数学知识点,对于小学生来说掌握这个知识点非常重要。在教学中,我们应该采用多种方法,让学生更好地理解和应用这个知识点,从而提高其数学成绩和应用能力。

分数与除法教学反思15

  分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法的关系》这一内容时,从以下两方面考虑:

  1、从解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  2、分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把1平均分成4份,表示这样的3份;也可以理解为把3平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

  1、提供丰富的素材,经历数学化过程。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的'表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

  2、问题寓于方法,内容承载思想。

  数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

  就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

【分数与除法教学反思】相关文章:

《分数与除法》教学反思09-18

分数除法的教学反思06-17

分数与除法教学反思07-16

分数除法教学反思06-08

《分数除法》教学反思09-20

分数除法教学反思10-28

分数与除法教学反思09-14

分数除法的教学反思07-06

《分数除法》教学反思08-30

《分数与除法》教学反思10-15