比的应用教案
作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写才好呢?下面是小编为大家整理的比的应用教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
比的应用教案1
教学目标知识技能
1、会根据问题情境及条件列出分段计费及盈不足等问题的二元一次方程组,并能检验解的合理性;
2.通过解决实际问题进一步体会方程建模的过程和作用.
数学思考经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.
问题解决让学生进一步经历和体验列方程组解决实际问题的过程,培养学生的数学应用能力.
情感态度通过对问题的解决,进一步认识数学与现实世界的密切联系,培养学生必要的经济意识,增强他们节约成本、有效合理利用资源的意识,培养学生的数学应用意识,提高学习数学的趣味性、现实性、科学性.
教学重点抽象出数学模型,引导学生参与讨论和探究问题.
教学难点将实际问题转化成二元一次方程组的数学模型.
授课类型新授课课时
教具多媒体课件
教学活动
教学步骤师生活动设计意图
活动一:创设情境导入新课
【课堂引入】1.某旅行社在黄金旅游期间为一个旅游团安排住宿,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住了4人,且空两间宿舍,那么该旅游团有多少人?有多少间宿舍?图1-3-72.上节课我们学习了列二元一次方程组解应用题的一般步骤,并学习了行程问题,百分比问题的解决思路,这节课我们一起来学习分段计费、盈不足问题的解决方法.利用同学们熟悉的生活中的问题去激发学生学习本节课的兴趣,导入课题.
活动二:实践探究交流新知
【探究1】分段计费问题某城市规定:出租车起步价所包含的路程为0~3 km,超过3 km的部分按每千米另收费.甲说“我乘这种出租车走了11 km,付了17元.”乙说:“我乘这种出租车走了23 km,付了35元.”请你算一算:出租车的起步价是多少元?超过3 km后,每千米的车费是多少元?阅读后思考回答:问题1:由甲乘车付费可以得到一个什么样的等量关系?由乙乘车付费又可以得到一个什么样的等量关系?问题2:在这两个等量关系中,未知量有几个?各小组成员共同讨论,探讨已知与未知,并探讨设元的方法.问题3:你能通过设元列出二元一次方程组吗?试试看.解:设出租车的起步价是x元,超过3 km后每千米收费y元.根据等量关系,得解得答:这种出租车的起步价是5元,超过3 km后每千米收费1.5元.归纳总结:分段计费的常见等量关系是:总费用=各分段费用之和.
【探究2】盈不足问题把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?问题1:“若每人分3本,则剩余20本”,你怎样理解这句话?如果设这个班有x名学生,根据这句话,你能用含x的代数式表示书本数吗?同样地,“若每人分4本,则还缺25本”又如何理解?你能用含x的代数式表示书本数吗?问题2:你能用列一元一次方程求解这道题吗?试试看.问题3:如果需要列二元一次方程组求解本题,你认为应该如何设元?如何列方程组?小组内合作,共同交流,提出各自的解法,然后讨论.归纳总结:盈不足问题常见的处理方法是:用一个未知数的代数式表示另一个量,再根据同一个量的两种不同表示方法,列一元一次方程求解;也可直接列二元一次方程组求解.解法一:设这个班有x名学生.根据题意,得3x+20=4x-25.解得x=45.答:这个班共有45名学生.解法二:设这个班有x名学生,图书一共有y本.根据题意,得解得答:这个班共有45名学生.通过合作探究,使学生初步学会设计适当的图表,帮助理清题目中的数量关系,从而提高学生分析问题和解决问题的`能力.在实际问题的解决过程中,进一步提高学生解方程组的技能.
活动三:开放训练体现应用
【应用举例】例1用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?解:设这根绳子长为x尺,环绕油桶一周需y尺.由题意,得解得答:这根绳子长为25尺,环绕油桶一周需7尺.变式训练1.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.则敬老院有多少位老人?2.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个B.5个C.10个D.12个3.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”.电力公司规定:居民家庭每户每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每户每月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家20xx年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时.(2)若6月份小张家预计用电130千瓦时,请预计小张家6月份应上缴的电费.解:(1)设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时.根据题意,得解得答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130-80)×1=98(元).答:预计小张家6月份上缴的电费为98元.通过应用举例,及时反馈学生的学习情况,并及时地查缺补漏,进一步提升教学效果.进一步体会此类问题的解决方法,并能灵活解题.
解:(2)由(1)可列方程组解得3+6=9(千米).答:他家到海滨9千米.除巩固课堂所学知识外,也给学生创造了一个知识迁移及拔高的机会,使学生各抒己见,并培养学生分析问题、解决问题的能力.
活动四:课堂总结反思
【当堂训练】七年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班购买一筐桃,每人分6个,则少6个,每人分5个,则多5个,则班级人数与桃数各是(B)A.22,120 B.11,60 C.10,54 D.8,423.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”.诗句中谈到的鸦为__20__只,树为__5__棵.练习题的设置一方面加强学生对知识的掌握,从而提高对知识的运用能力;另一方面可以查缺补漏,为以后教师的教和学生的学指明方向.
【课堂总结】布置作业:1.教材P18练习T1,T2.2.教材P18习题1.3A组T3,B组T7. 布置作业,专题突破.
活动四:课堂总结反思
【教学反思】
①[授课流程反思]从生活中常见的事例入手,引起学生的注意,同时也为学生今后的学习做铺垫.
②[讲授效果反思]通过设问的形式,引导学生理解题意,帮助学生分清已知和未知,掌握本课时内容,突破难点.
③[师生互动反思]课堂上教师真正发挥学生的主体地位,特别是遇到较难解决的问题时,可让同学们分组探究、归纳总结,同时,加强学生之间的相互评价.
④[习题反思]好题题号____________________________________________错题题号____________________________________________
比的应用教案2
教学重点:推论公式的得出及应用.
教学难点:初速度为零的匀变速直线运动的比例关系.
主要设计:
一、例题1的处理:
1、让学生阅读题目后,画运动过程草图,标出已知条件,a,s,待求量.
2、请同学分析解题思路,可以鼓励学生以不同方法求解,如“先由位移公式求出时间,再利用速度公式求”等.
3、教师启发:上面的解法,用到两个基本公式,有两个未知量t和,而本题不要求求出时间t,能否有更简单的方法呢?可以启发学生两个基本公式的消去,能得到什么结论呢?
4、让学生自己推导,得到,即位移和速度的关系,并且思考:什么条件下用这个公式更方便?
5、用得到的推论解例题
二、思考与讨论的处理
1、三个公式中共包括几个物理量?各个公式在什么条件下使用更方便?
2、用三个公式解题时,至少已知几个物理量?为什么?[(知三求二)因为三个公式中只有(1)(2)两个是基本公式,是独立的方程,(3)为推论公式,所以最多只能求解两个未知量]
3、如果物体的初速度等于零,以上三个公式是怎样的?请同学自己写出:
三、例题2的处理
1、让学生阅读题目后,画运动过程草题,标出已知量、待求量为.
2、放手让同学去解:可能有的同学用公式(3)和(1)联立先解出a再求出t;也可能有的.同学利用前面学过的,利用求得结果;都应给予肯定,也可能有的同学受例1的启发,发现本题没让求加速度a,想到用基本公式(1)(2)联立消去a,得到.
3、得到后,告诉学生,把它与对比知,对于匀变速直线运动,也可以当作一个推论公式应用,此公式也可由,将位移公式代入.利用求得.(请同学自己推证一下)
4、用或解例2.
四、讨论典型例题(见后)
五、讨论教材练习七第(5)题.
1、请同学根据提示,自己证明.
2、展示课件,下载:初速度为零的匀加速直线运动(见媒体资料)
3、根据课件,展开讨论:
(1)1秒末,2秒末,3秒末……速度比等于什么?
(2)1秒内,2秒内,3秒内……位移之比等于什么?
(3)第1秒内,第2秒内,第3秒内……位移之比等于什么?
(4)第1秒内,第2秒内,第3秒内……平均速度之比等于什么?
(5)第1个1米,第2个1米,第3个1米内……所用时间之比等于什么?
探究活动
根据本节所学知识,请你想办法测出自行车刹车时的初速度及加速度,需要什么测量仪器?如何测量?如何计算?实际做一做.
如何提高做物理作业的效率
(1)课后作业的目的要明确:巩固课堂所学,进一步巩固考点。
很多学生做作业就特别被动,就只是为了完成老师的任务,有一些题做错了,错因是什么?也不认真分析答案,更不用说与课题笔记做个对照了。做老师布置的作业,本身是一个复习的过程,是一个强化知识的过程,两者并没有割裂开,也不应该割裂开;两者是统一的,都是消化知识、吸收知识的过程。
另外,课堂笔记中的一些口头作业也应该看看,比如老师课堂上让我们总结下动能定理的研究对象,等等。有时候我们高估了自己的能力,觉得听了一遍就认为掌握了,可在考试中考题略作变形,我们就不知道该怎么办了。课堂上老师讲过的题没有搞扎实,所以我说同学们要耐得住寂寞,把笔记认真看看,多看几遍,即使你觉得很无聊;不过对你的学习确实是有帮助的。
(2)平时做作业给自己限定时间,提高解题速度。
很多学生做题慢,平时做作业不着急,本来这道题五分钟就能做完,总习惯做十分钟,这样的不良习惯,一旦养成,考场上想提高解题速度都难。
提高解题速度的一个重要环节就是计算能力,数学计算能力在做作业的过程中也要抓起来。数学是解决物理问题的重要工具,特别是综合的解答题,最终都是要用数学知识(列方程组)来求解,计算错误扣分很严重,同学们必须强化数学计算能力,把常用到的数学知识做个归纳。比如,方程组的求解运算、公式的推导、等差数列、三角函数、求最大值等都要在课下最好下点功夫整理。
(3)注意前面知识点的复习。
物理考题非常综合,一道考题可能考到很多知识点,同学们都应该认可高中物理题的这个特点。比如,我们学到磁场这部分的时候,还是要借助于力学中圆周运动、功和能等知识点来分析。很多学生之所以学不好磁场或电磁感应,就是因为前面的力学部分内容全部都忘掉了,所以同学们一定要在做作业前把前面需要用到的知识点,特别是自己前期没学明白的地方好好巩固下。利用课外琐碎的时间去复习这些知识点,养成经常复习、经常查漏补缺的好习惯。
(4)课下做作业有问题就要多与周围小伙伴们交流。
其实学生们之间相互提问、交流、讨论是一种非常好的学习模式,这种模式未必比老师讲课差。课下做作业时同学们遇到不懂的物理问题,多去问问他人,有时一道难题大家都不会做,可讨论着讨论着,大家都提出自己的看法,很有可能思路就有了。这种学习模式一点都不压抑,都非常主动,效果很好。
很多同学喜欢科比、梅西这些运动明星,可是他们在赛场外的努力,你又知道多少呢?之所以发挥好,是因为台下的十年功夫,没有谁能随随便便的成功!他们是我们的偶像,更是值得我们学习的榜样。
比的应用教案3
活动目标
了解生活中双数的存在及双数在生活中的应用。
尝试用1说出成双成对的物品,体验游戏的.快乐。
活动准备
4件衣服,每件衣服有4粒能系的扣子。
活动过程
了解双数的另一种表达方法。
教师伸出双手。教师提问:两只手还可以怎样说?了解两只手还可以说成一双手。引导幼儿理解每位小朋友都有两只手,还可以说每位小朋友都有一双手。
寻找生活中成双成对的物品,尝试用1说出成双成对的物品。
请寻找自己身上有哪些部分是成双成对的,生活中还有哪些物品需要成对使用。
引导幼儿用1来说出自己找到的物品,如一双袜子、一对触角、一对眼睛、一副手套,等等。
游戏“小手真能干",理解双手在生活中的重要性。
将幼儿分成两组,每组选出两名幼儿参加系扣子比赛。两组幼儿穿上衣服后,一组的幼儿用一只手系扣子,另一组的幼儿用双手系扣子,比一比哪组幼儿系得快。第一轮比赛结束后,两组幼儿交换系扣子的方法,继续游戏。
引导幼儿思考,在游戏中,哪种系扣子的方法快。并引导幼儿说说生活中哪些事情需要双手一起做。
活动延伸
指导幼儿完成幼儿用书中的“成双成对”。日常生活渗透在幼儿园中寻找身边成双成对的物品。
比的应用教案4
一、活动目标:
1、学习解答口报应用题,初步感受应用题的数量关系。
2、能边听应用题边摆算式,认识加号、等号。
3、通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。
4、能与同伴合作,并尝试记录结果。
二、活动准备:
1、贴绒数字1、2、3、4、5、加号、等号若干。
2、教具若干。
三、活动过程:
1、集体活动。
2、学习解答口报应用题。
A:“草地上有2只公鸡,又来了1只公鸡,草地上一共有几只公鸡呢?”“你是怎么算出来的?”你小朋友用一道算式表示。(幼儿说教师记)“这道算式表示刚才的一件什么事情?(2表示草地上有两只公鸡,1表示1只公鸡,加号表示又来了,等于3表示草地上一共有3只公鸡。)加号是什么样的?(一横一竖)等号是什么样的?(两条一样长的横线),集体把2+1=3的算式读两遍。
B:“动物园里有1头大象,又运来了2头大象,动物园里一共有几头大象呢?你是用一道什么算式算出来的?”“这道算式表示了一件什么事情?我们再来说一说。”
3、幼儿学习用算式记录口报应用题。
A:“河里有1条鱼,又游来3条鱼,河里一共有几条鱼?”
B:“飞机场有2架飞机,又飞来了3架飞机,飞机场一共有几架飞机呢?”
“谁愿意把你列的算式告诉大家?”(幼儿发言)3、幼儿作业教后感:这节课是看孩子的理解能力,小部分孩子的理解能力很好,,有的小朋友会把加法说成减法,容易搞错了。在操作的时候,大部分孩子还是能做对了。
四、活动反思:
在整个教学活动中,“应用题”相对于幼儿来说,是一个较为难理解又难掌握的领域,如何让幼儿们在提倡的“玩中学”这一模式中掌握知识点呢?我将此作为本次课堂设计的一个难点。以动画人物的形象激发幼儿的兴趣,让幼儿随着喜爱的'动画人物进入我所创设的环境中,让幼儿们在与动画人物相互交流的基础上,进行知识性的学习。在编应用题时,小朋友基本能大声的来编,可能是父母在场的关系,小朋友积极举手,认真的投入到活动中。在数学练习时,父母们都走去看自己的宝宝做练习,这个环节有点乱,可是家长们的心情可以理解,所以这个环节在父母们的一起参与下结束了。
比的应用教案5
教学目标
1.进一步认识图画应用题的结构特点,会正确地叙述图意,理解“求和”“求剩余”应用题的数量关系,正确解答图画应用题.
2.通过教学初步培养学生的识图能力、分析能力和语言表达能力.
3.体会数学与生活的密切联系,培养学生的学习兴趣.
教学重点
正确识图,理解图中数量关系.
教学难点
根据题意,正确选择算法.
教学过程
复习引入
1.学生开火车口算:8以内的加减法.
2.看图说图意并列式计算:
投影出示下面两题:
师:第一题为什么用加法?第二题为什么用减法?
今天我们继续学习用图画表示的应用题.
二、学习新知
1.教学例题
(1)出示例题图1(花图).
师:谁来说一说这幅图告诉了我们什么和什么,求什么?
指名回答.(花瓶里有5朵花,花瓶外有3朵花,一共有多少朵花?)
问:图上哪一部分不容易看出来?(花瓶里的.花的朵数)
说明:当图上的物体数量比较多或者物体间相互遮盖的时候不容易数出它的个数,这时候题中会给我们标明是多少或者能够让我们根据题中给的条件算出来,这道题就给我们标明了数据(板书:5朵).
师:下面就请你们自己说一说这幅图的意思.
集体说图意.
问:要求一共有多少朵,怎么想?
(要求一共有多少朵,就要把花瓶里的5朵和花瓶外面的3朵合并起来,用加法计算.)
谁会列算式?
板书:5+3=8
问:5+3=8表示什么意思?5表示什么?3和8呢?
(2)出示例题图2(小猫图).
师:请你们自己说一说这幅图的意思.
在学生独立说的基础上指名说图意.(一共有8只小狗,跑了2只,还剩几只?)
问:还剩几只?(6只)你是怎么知道的?(算的或数的)
师:当数量比较多或者数不出来的时候,我们应该根据题中的数量关系用计算的方法来解答.
问:谁来说说这道题怎样列式解答?
板书:8-2=6
问:8-2=6表示什么意思?8表示什么?2和6呢?
2.教学做一做
(1)投影出示蜗牛图
指名说图意,然后独立解答.
指名列式,老师板书:6+2=8
问:这道题为什么用加法?
(2)投影出示小猪吹泡图
学生试着自己说图意,然后独立解答.
指名列式,老师板书:8-3=5
问:这道题为什么用减法?8表示什么?
3.总结质疑:
师:想一想,今天我们学习的图画应用题和以前学习的图画应用题有什么不同?你还有什么问题吗?
巩固提高
1.学生独立完成教材46页的第14题,然后投影订正.
2.摆一摆、说一说
两人一组,一人摆学具,一人说题意列算式.
3.看算式编题
出示:3+5= 8-2=
学生结合生活实际编题,指名回答,大家当裁判.
板书设计
比的应用教案6
教学目的
1.通过复习,使学生能够运用已学的知识解答应用题.
2.通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
3.使学生知道知识的内在联系及其可以转化的辩证唯物主义观点.
教学重点
通过复习,使学生能够运用已学的数量关系,正确解答应用题.
教学难点
通过复习,使学生知道同一道题中,数量关系可以转化,用不同方法解答.
教学过程
一、复习准备.
1.导入:我们已经复习了应用题的数量关系掌握了不同的应用题的不同分析、解答方法.今天我们就用我们学过的不同知识来解应用题.(板书课题:用不同知识解应用题)
2.填空:已知甲数是乙数的6倍.那么:
(1)乙数是甲数的
教师追问:为什么填 呢?这时两个数的倍数关系转化成了什么关系?
(2)甲数与乙数的比是( )∶( )
(3)甲数与甲乙两个数的和的比是( )∶( )
(4)乙数与甲乙两个数的和的比是( )∶( )
教师提问:这时两个数的倍数关系转化成了什么关系?
教师总结:通过复习,我们发现了倍数关系、分数关系、比的关系之间,可以互相转化.
二、复习探讨.
(一)教学例6.
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
1.学生读题,分析已知条件和问题.
2.分组讨论:
(1)题目中的数量关系是什么?
(2)松树的棵树是柏树的4倍,可以转化成哪几种关系?
(3)本题有几种解法?
3.学生汇报反馈.
(1)因为:松树的棵数+柏树的棵数=120棵
所以:我们可以根据这个等式列方程解应用题.
解:设柏树种了 棵.
120-24=96(棵)
解:设松树种了 棵.
120-96=24(棵)
答:柏树种了24棵,松树种了96棵.
(2)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1.
所以根据转化的比的关系,可以用按比分配的知识来解答.
4+1=5
120× =96(棵)
120× =24(棵)
答:柏树种了24棵,松树种了96棵.
(3)因为松树的棵树是柏树的4倍,所以松树和柏树棵树的和是柏树棵树的5倍,我根据倍数的数量关系可以运用算术方法解题.
120÷(4+1)=24(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(4)因为松树的棵树是柏树的4倍,所以柏树的棵数就是松树棵树的 ,如果把松树的棵数看作单位1,那么,120棵对应的率就是1+ ,根据倍数的数量关系可以运用算术方法解题.
120÷(1+ )=96(棵)
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
(5)因为松树的`棵树是柏树的4倍,所以松树和柏树棵树的比是4∶1,松树和松树、柏树棵树和的比是1∶5,所以根据转化的比的关系,我可以用比例的知识来解答.
解:设柏树有 棵.
∶120=1∶5
5 =120
=24
120-24=96(棵)
答:柏树种了24棵,松树种了96棵.
4.请你以小组为单位,讨论、交流你最喜欢那种方法.为什么?
5.教师总结:在我们解应用题时,一道应用题的数量关系,可以转化成不同解决形式.在解答时,我们选择我们熟练、简便的方法进行解答.
三、巩固反馈.
1.用不同的方法解答下面各题.
(1)幼儿园买来120张彩色电光纸,比买来的白纸少 .这两种纸一共买来多少张?
(2)养鸡场的肉用鸡是蛋用鸡的3倍,肉用鸡比蛋用鸡多15000只.蛋用鸡和肉用鸡各养多少只?
2.思考题.
甲乙两个工程队合修一段公路,甲队的工作效率是乙队的 ,两个队合修6天正好完成这段公路的 ,余下的由乙队单独修,还需要几天能够修完?
四、课堂总结.
通过这堂课的学习,你有什么收获?
五、课后作业.
1.芳芳的父亲每月收入是780元,母亲每月收入720元.全家每月生活支出的钱数是储蓄钱数的4倍.芳芳家每月储蓄多少元?(用不同的知识解答)
2.洗衣机厂一月份生产了3000台滚筒洗衣机,相当于波轮洗衣机的 .一月份一共生产了多少台洗衣机?(用不同的知识解答)
六、板书设计
用不同知识解应用题
少先队员在山坡上栽种松树和柏树,一共栽种了120棵,松树的棵数是柏树的4倍.松树和柏树各栽多少棵?
方法一 方法二 方法三 方法四 方法五
比的应用教案7
教学目标
1.使学生初步学会列含有未知数 的等式,解答需要逆思考的加、减法一步应用题。
2.培养学生分析推理能力。
教学重点
分析数量关系。
教学难点
准确迅速地找出等量关系。
教学过程
一、复习引入
1.求未知数 (要求口述口算过程,并说出根据)
18+ =37 54- =23 +67=83-26=13 +47=79 35- =7
2.板演(与口算同步进行)
学校买来70盒粉笔,用去28盒,还剩下多少盒?(订正板演,同时把条件和问题对调,变成例7)
二、讲授新课
教师谈话:今天我们继续学习解答应用题。(板书课题:解应用题)
1.教学例7
学校买来一些粉笔,用去28盒,还剩42盒.学校买来多少盒粉笔?
(1)指名读题,分析题意,明确已知条件和所求问题。
(2)板书线段图,学生根据线段图列式解答。
28+42=70(盒)
(3)引导学生理解算理
提问:怎样进行检验呢?
A: 用买来的70盒粉笔作为已知条件,减去用去的28盒,如果等于剩下的42盒说明解答正确。
B: 用买来的70盒粉笔作为已知条件,减去剩下的42盒,如果等于用去的28盒说明解答正确。
教师板书:
A:买来的盒数-用去的盒数=剩下的盒数
B:买来的`盒数-剩下的盒数=用去的盒数
提问:(a)买来的盒数知道吗?
教师说明:可以设买来粉笔盒。
(b)买来的盒数为 ,用去的知道吗?剩下的知道吗?谁能列出一个等式 ?
引导学生列式: -28=42 -42=28
(补充课题:列含有未知数 的等式)
(c)结合题意说一说等式的意思。
(d)解答等式 -28=42 -42=28
=42+28 =42+28
=70 =70
教师说明:因为设未知数 时,已经说明单位名称是盒,所以计算结果就不用再写单位名称。
(e)指导学生检验。
2.引导学生小结
提问:今天我们学习的列含有未知数 的等式来解答应用题,它有哪些步骤呢?结合例7说一说.
第一步:读题弄清题意,分清已知条件,求的是什么?设未知数为 (板书:设)
第二步:按照题意,找出哪些数量与哪些数量有相等的关系,列出含有未知数 的等式.(板书:列)
第三步:求出未知数 是多少(板书:求)
注意: 代表的数量不写单位名称.
第四步:检验并写出答话.(板书:验、答)
三、巩固练习
1.食堂原来有27袋大米,又买来一些,现在共有43袋.食堂又买来多少袋大米?(列含有未知数 的等式,再解答出来)
订正时要让学生说一说根据什么列出含有未知数 的等式,并注意计算和书写格式有没有错误。
2.小林原来有一些邮票,同学又送给他14张,现在一共有70张.小林原来有多少张邮票?
3.小强读一本童话书,已经读了49页,还有36页没有读.这本童话书有多少页?
四、课堂小结
今天我们学习了什么知识?谁能说一说列含有未知数 的等式解应用题的步骤?
五、课后作业
1.山坡上栽满了松树和柏树.松树有250棵,比柏树多120棵.柏树有多少棵?
2.小明有连环画38本,比小林少13本。小林有多少本?
比的应用教案8
教学内容:教科书第47、48页例2和“做一做”,练习十二第5~10题
教学目的:在已学过的归一应用题的基础上,进一步学习解答三步应用题,使学生掌握解答应用题的一般步骤,提高学生解答应用题的能力。
教学重点:引导学生进一步掌握解答应用题的一般步骤。
教具准备:小黑板
教学过程:
一、复习
完成第51页口算题,开火车形式。
出示复习题:滨河公园原来有20条船,每天收入360元。照这样计算,现在有35条船,每天一共收入多少元?
指名板演后集体订正
指名说说解题思路。要求35条船一共收入多少元,必须要先算什么?怎样算?然后再算什么?
强调:要求每天一共收入多少元,必须要先知道每条船每天收入多少元和有多少条船。现在“有35条船”这个条件直接给了,而“每条船每天收入多少元”题中没有给,必须要先算出来,才能算出每天一共收入多少元。
二、新课
1、教学例2
(1)出示例2:滨河公园原来有20条船,每天收入360元。照这样计算,现在增加了15条船,每天一共收入多少元?
指名读题。
教师:这道题已知什么?求的`是什么?谁来说一说?
指名说,教师在黑板上画出线段图。
教师:现在请同学们根据线段图小组讨论,互相说一说解题思路。
(可以从问题入手)
学生口述分步解答的步骤,教师板书。
(1)平均每条船收入多少元?
360÷20=18(元)
(2)现在一共有多少条船?
20+15=35(条)
(3)每天一共收入多少元?
18×35=630(元)
教师:谁能列综合算式解?(口述)
(2)比较例2和复习题的异同
引导:仔细观察例2和复习题,它们有什么相同,有什么不同?
小组讨论,可提示:从它们的已知条件和问题入手。
指名回答
教师:由此可知,例2的数量关系和复习题基本上是一样的,只是求一共收入多少元所需要的两个条件都没有直接给出,所以比复习题还要多算一步,一共用三步才能计算出结果。只要我们通过分析,弄清数量关系,解答就不困难了。
(3)完成例2的解答
让学生在练习本列综合算式解答,并写出检验。然后请一名学生说一说自己是怎样检验的。
2、教学例2的不同解答方法
教师:大家再想一想,例2还有没有别的解答方法?(引导学生看线段图)
小组讨论后做在练习本上,教师个别指导,指名板演。
三、巩固练习
1、第48页做一做,集体订正。
2、练习十二第6题,指名板演。
四、小结
今天我们又学习了一种三步计算的应用题,这种应用题只是在以前学过的归一应用题的基础上再增加一步。所以,以后解答应用题时,遇到没有做过的题目,只要我们掌握了解答应用题的一般步骤,经过认真思考,就可以解答出来。
五、作业
1、课堂作业:练习十二第7、8、9、10题
7、5箱蜜蜂一年酿350千克蜂蜜。照这样计算,8箱蜜蜂一年可以多酿多少千克蜂蜜?
8、有一堆马铃薯6025千克,已经装了40袋,每袋
要求:写出每步的意义并检验
六、板书设计
三步应用题
线段图解题过程
检验过程
七、教后感:
比的应用教案9
教学目标:
1、知识与能力:在具体情景中理解百分数的意义
2、过程与方法:能解决有关百分数的实际问题
3、情感态度价值观:体会百分数与现实生活的密切联系。
教学重点:
百分数的意义,作用。
教学难点:
百分数应用的正确计算。
教学过程:
一、我会填空。
1、一套西服,上衣840元,裤子210元,裤子的价钱是上衣的()%,上衣的价钱是这套西服的()%。
2、五月份销售额比四月份增加15%,五月份销售额相当于四月份的()%;四月份销售额比五月份减少()%。
3、“六一”期间游乐场门票八折优惠,现价是原价的()%。儿童文具店所有学习用品一律打九折出售,节省()%。
4、大豆种子的发芽率是98%,发芽数占种子总数的()%,未发芽数占种子总数的()%。
5、从学校到文化宫,甲要20分钟,乙要16分钟。乙的速度比甲快()%,乙的时间比甲少()%。
6、用80粒大豆种子作发芽试验,结果有4粒没有发芽。种子的发芽率是()%,如果需要3800棵大豆苗,需要播种()粒大豆种子。
二、判断。
1、甲班男生占全班人数的53%,乙班男生也占全班人数的53%。甲、乙两班男生人数相等。()
2、100克糖放入400克水中,糖占糖水的20%。()
3、甲数比乙数多35%,乙数比甲数少35%。()
三、选择正确答案的序号填在括号里。
1、如果甲数的60%等于乙数的(甲数和乙数都不为零),那么()。
A、甲数<乙数B、无法确定
C、甲数>乙数D、甲数=乙数
2、下面的三种说法中,正确的是()
A、一段铁线长80%米
B、全班的及格率是102%
C、男生人数比女生多5%
3、一商品先提价15%,再降价15%。现价()原价。
A、低于B、等于C、高于
4、六年级男生有132人,比女生多10%,六年级有女生多少人?设女生有x人,方程不正确的是()
A、x+10%x=132 B、x—10%x=132 C、(1+10%)x=132
四、解方程。
25%x = 75 60%x-35%x = 125
五、解决问题。
1、一个电饭煲的'原价220元,现价160元。电饭煲的价格降低了百分之几?(百分号前保留一位小数)
2、修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米。这条公路全长多少千米?
3、西乡今年荔枝大丰收,产量达到3。6万吨,比去年增产了二成,西乡去年荔枝的产量是多少万吨?
4、用汽车运一批水果,第一天运的吨数与总重量的比是1:3。如果再运15吨,就可以运完这批水果的一半。这批水果共有多少吨?
比的应用教案10
(一)活动目标:
1、学习用描述和模仿的方法编5以内的加法应用题。
2、初步获得编加法应用题的感性经验。
(二)活动准备:
物质准备:
(1)教师演示材料:1个小熊玩具和1个小老虎玩具,玩具苹果4个。
(2)幼儿每人一个小筐子,内分别装有5以内的玩具,如有的装公共汽车3辆、有的装小轿车4辆、有的装小兔2只、有的装水果5个等。
(3)分组活动材料:
A、桌上摆放5辆车,有公共汽车和小轿车、有红色的和黑色的车;
B、桌上摆放4只玩具兔子,有小灰兔和小白兔、有大兔子和小兔子;
C、桌上摆放3个玩具碗,大小、颜色不同;
D、桌上摆放4个苹果,大小、颜色不同。
(三)活动过程:
1、教师边操作实物边描述。
师:我先买了1个小熊玩具,又买了1个小老虎玩具,我一共买了2个玩具。刚才老师怎么说的?请小?请小朋友照着老师说也来说一说。
教师出示4个苹果,用同样的方法进行描述。
2、幼儿根据自己框子里的玩具,学习描述。
(1)幼儿两人一组,根据筐子里的玩具,互相描述,教师倾听幼儿编题情况。
(2)师幼分享交流:框子里有什么玩具?可以怎么说?
3、教师在幼儿描述的基础上,仿编加法应用题。
(1)师:如果把"一共有3辆汽车"变成一个问题问大家,应该怎么问?"(一共有几辆汽车?)
(2)提出要求:请小朋友根据框子里的玩具情况编一道加法应用题吧。
(3)幼儿两人一组,根据筐子里的玩具情况仿编应用题。
(4)师幼分享交流:框子里有什么玩具?你是怎么编应用题的?
4、幼儿分组活动,根据情景自由编加法应用题。
介绍各组材料:
第一组:桌上摆放5辆车,有公共汽车和小轿车、有红色的和黑色的车;
第二组:桌上摆放4只玩具兔子,有小灰兔和小白兔、有大兔子和小兔子;
第三组:桌上摆放3个玩具碗,大小、颜色不同;
第四组:桌上摆放4个苹果,大小、颜色不同。
玩法:两人一组,根据桌上摆放的.玩具编加法应用题。一个编,一个听,然后交换角色,继续观察玩上的不同点,编另外一道加法应用题。
幼儿分组自由编加活动应用题。教师倾听幼儿编题情况,特别是最后的问句。
师幼分享交流:你选用什么玩具?怎么编题的?
(四)活动延伸:
区域活动:在数学区投放玩具,引导幼儿根据玩具特征仿编加法应用题。
生活活动:鼓励幼儿利用周围环境中的事物编加法应用题。
教学反思:
数学活动对于小朋友来说是个很愉快的课程,因为整节活动中游戏的时间多,而且小朋友动手操作的机会比较多,但是要让孩子们能真正的理解这节教学活动的内容,并做到熟练掌握、灵活运用却不是那么容易。
比的应用教案11
【晒课说明】这是笔者在我校省级骨干教师献课活动中的一节示范课,这节课受到了听课老师们的高度评价和赞美,本课以本班学生的人数为原料,把学生们的最爱“串串烧”引入课堂教学,设计非常巧妙、新颖、别致。又根据口味的不同,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程(编一步、两步、三步计算的应用题),一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,我们听课的老师们也吃香了,印象深刻,不易忘记。就连学校请来录课的摄影师说,我录过的数学课很多,还没有听过这么好的有趣的数学课,如果我小时候能遇到这么好的老师讲课,我的数学也能学好。笔者想:既然有这么高的评价,我何不整理出来,让更多的老师们来分享。(此教学设计在20xx年全省中小学教育优秀论文、教学设计评选活动中荣获一等奖。)
【教学内容】
人教版六年级数学上册分数乘除法应用题。
【教材及学情分析】
本节课主要将学生学过的分数乘除法应用题集中编排,通过学生编题、解题,让学生经历三个层次的练习,进一步理解分数乘除法的意义,让学生进一步掌握分数乘除法应用题的结构特点和数量关系,提高解决问题的能力。
【教学重点、难点】
学生通过自己编题,解题,进一步理解并掌握分数乘除法应用题的结构特点和数量关系。
【教学目标】
1、通过学生编题、解题,进一步理解分数乘除法的意义。
2、使学生进一步理解并掌握分数乘除法应用题的结构特点和数量关系,提高解决实际问题的能力。
3、让学生感受数学和实际生活的紧密联系,培养学生学习数学的兴趣。
【教具准备】
电子白板、PPT
【复习程序】
一、导入新课
师:同学们你们知道今天这么多的老师来听我们班的什么课(数学课)既然是来听我们的数学课,我们就要拿数来说事了。请同学们给在座的老师们介绍一下我们班的人数情况,共有多少人?女生多数人?男生多少人?(根据学生的介绍出示课件:我们班共有75人女生30人,男生45人)(设计意图:本班人数是学生们最熟悉的啦,所以同学们争先恐后的向听课的老师们介绍本班人数,一下子和听课的老师们拉近了距离,消除了同学们的陌生感,课堂气氛马上活跃了。)
二、建构关系
师:同学们刚才我们只是向老师们用75、30、45三个数介绍了我们班的人数情况,对我们六年级的学生来说这种介绍是不是太过于简单了,不是我们六年级学生应有的水平,请拿出你们的真水平和高水平。运用所学的分数给以上三种量中的任意两种量之间建立关系做进一步的介绍。(根据学生介绍,老师整理如下)出示课件
学生介绍如下:
女生占全班的2/5
男生占全班的3/5
女生占男生的2/3
男生占女生的3/2
女生比男生少1/3
男生比女生多1/2
女生比全班少3/5
男生比全班少2/5
……
(设计意图:引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。)
三、自主探究提高能力
师:同学们通过你们这么精彩的介绍,我想在座的老师们已经对我们班的人数有了进一步的了解,这两组数据多像好看又好吃的“串串烧”,同学们喜欢吃“串串烧”吗?老师也和你们一样喜欢吃“串串烧”。“串串烧”有各种口味的,第一组数据是原汁原味的,这组就叫“原味串串烧”,第二组数据是我们加了佐料做出来的,就叫“香味串串烧”吧,同学们是不是觉得光吃这两串还不过瘾,(是)那我们再给它加点佐料辣椒粉,来串“微辣串串烧”怎么样?(好)请大家听制作要求,用这两组数据为原料,老师再给你们提供三个问题,女生有多少人?男生有多少人?全班有多少人?
(一)(微辣串串烧)编一步计算的分数乘除法应用题,并分析解答。
学生编题如下:
全班共有75人,女生占全班的2/5,,女生有多少人?
全班共有75人,男生占全班的3/5,男生有多少人?
女生有30人,女生占全班的2/5,全班有多少人?
男生有45人,男生占全班的3/5,全班有多少人?
女生有30人,男生占女生的3/2,男生有多少人?
男生有45人,女生占男生的2/3,女生有多少人?
男生有45人,男生占女生的3/2,女生有多少人?
……
(设计意图:教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,同学们想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,既一步计算的分数应用题,一下子吊起了学生的胃口,同学们积极性会异常高涨。)
师:同学们编的真多,分析解答的也真好,你们解答这类应用题的妙招是什么?
生:第一步先找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。
(设计意图:编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。及时总结解题方法。)
师:同学们我来评价一下你们的这串“微辣串串烧”行吗?香味有余,但辣味不足。我们能不能再给它加点辣椒粉,来串“中辣串串烧”过过瘾。(行)请听制作要求,继续以这两组数据为材料。
(二)(中辣串串烧)编两步计算的分数乘除法应用题,并分析解答。
学生编题如下:
全班共有75人,男生占全班的3/5,女生有多少人?
女生有30人,女生占男生的2/3,全班有多少人?
女生有30人,男生占女生的3/2,全班有多少人?
男生有45人,女生占男生的2/3,全班有多少人?
男生有45人,男生占女生的3/2,全班有多少人?
女生有30人,女生比男生少1/3,男生有多少人?
女生有30人,男生比女生多1/2,男生有多少人?
全班共有75人,女生占全班的.2/5,男生有多少人?
男生有45人,女生比男生少1/3,女生有多少人?
男生有45人,男生比女生多1/2,女生有多少人?
……
师:同学们你们解答这类应用题的绝招又是什么?
生:第一步仍找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或方程解答。
师:有一部分同学口味重,吃着这串“中辣串串烧”觉得还是不过瘾,还想挑战一下,来串“特辣串串烧”过过瘾好吗?请听制作要求,仍一这两组数据为材料。
(设计意图:逐层递进,通过制作“中辣串串烧”,既编两步计算的分数乘除法应用题,这样我们学过的两步计算的各种类型的分数乘除法应用题跃然纸上,供同学们解答,为学生的创新思维提供了丰富的习题情境。)
(三)(特辣串串烧)编三步计算的分数乘除法应用题并分析解答。
学生编题如下:
全班共有75人,女生比全班少3/5,男生有多少人?
全班共有75人,男生比全班少2/5,女生有多少人?
女生有30人,女生比男生少1/3,全班有多少人?
女生有30人,男生比女生多1/2,全班有多少人?
男生有45人,女生比男生少1/3,全班有多少人?
男生有45人,男生比女生多1/2,全班有多少人?
女生有30人,女生比全班少3/5,男生有多少人?
男生有45人,男生比全班少2/5,女生有多少人?
……
(设计意图:再一次吊起学生的胃口,通过同学们制作“特辣串串烧”把课堂推向高潮,真正激活学生的思维,这样学生的参与面广,覆盖较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。)
归纳:不管是哪种口味的“串串烧”,制作、分析、解答的妙招和法宝都是先找单位“1”,然后看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。
四、全课总结
1、同学们今天我们以什么样的方法复习了分数应用题?这节课你有什么收获?同时出示课题:复习分数乘除法应用题。
2、一步、两步、三步计算的分数乘除法有共同的解题策略吗?
3、你对今天这节课自己的表现还满意吗?自我评价一下
4、还有什么问题或困惑吗?
(设计意图:培养学生学习新知识后要及时地总结学习方法和解题策略的意识,让学生会对自己的表现进行自我评价,而且培养学生提问题的能力和意识。克服教师作学生代言人,让学生真正成为课堂的主人。)
板书设计:
复习分数乘除法应用题
解题策略
1、找准单位“1”
2、单位“1”是已知的,用乘法计算
3、单位“1”是未知的,用除法计算
【反思】
课始给听课的老师们介绍本班人数引入复习内容,然后又引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。也为学生的创新思维提供了丰富的习题情境。
然后教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,一下子吊起了学生的胃口,同学们还想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,“中辣串串烧”,“特辣串串烧”。抛出了三个思维空间广阔的、层层推进的问题,将学生已有的知识储备激活,对自己所学的分散、零乱、细碎的知识点,结成知识链,形成知识网,对认知结构实行精加工,自然而然地实现编题和解题策略的最优化。提高学生的发散思维能力和创新能力。让学生自主探索,学生始终处于兴奋状态,大家一次次跃跃欲试,学习积极性异常高涨。学生根据分数应用题的特点和题目中的数量关系,灵活选择条件和问题,各种口味的“串串烧”被同学们制作出来了,并顺利分析解答完毕。
每次编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。
这样的复习方法,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程,一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,而且印象深刻,不易忘记。这样一节课下来,真是“你有我有全都有。”人人都有收获,优等生得到了施展,中等生得到了锻炼,后进生得到了提高。实现了互相学习、取长补短、共同提高的目的。
比的应用教案12
第一章计 算机基础知识
1.1计算机概述
1.2计算机系统教学目的使学生了解计算机基础知识,掌握计算机系统的概念教学重点1.了解计算机系统的组成以及各部分的主要功能
2.掌握键盘的使用,学会标准指法操作教学难点计算机系统的组成及各部分的主要功能建议学时理论:2上机:2教学教具多媒体教学系统教学方法理论:使用多媒体教学方法讲授(.PPT);上机:指导上机实验演示设计
板书设计1.1计算机概述
1.2计算机系统教学过程课程导入
主要内容介绍什么是计算机,计算机的特点,计算机的应用与发展:
什么是计算机;
计算机的发展;
计算机的分类;
计算机的主要应用;
计算机硬件系统:
结合具体实例进行讲解;
计算机软件系统:
举例说明计算机的软件系统,使学生对这一抽象概念有较深刻的印象。
详细内容及要求一、教学内容:1、了解计算机的发展;
2、了解计算机系统的组成以及各部分的主要功能;
3、掌握键盘的使用,熟练掌握标准指法操作;
4、了解计算机中数据的表示编码。
二、教学基本要求
了解计算机的特点、发展史(包括微型计算机的发展史)、类型、应用领域及前景;(教案 ) 掌握计算机软件系统及硬件系统构成,了解微机的硬件系统,包括掌握微机系统硬件组成及主要性能指标。了解微机的软件系统,包括掌握机器指令与计算机语言(机器语言,汇编语言,高级语言)的概念、系统软件与应用软件的概念;数据在计算机中的表示及编码,包括了解二进制数概念、计算机内采用二进制数的优点。
三、重点与难点
重点:计算机的'发展史和应用领域,计算机软件系统及硬件系统构成,数据在计算机中的表示及编码
难点:计算机基本工作原理,数据在计算机中的表示及编码。
四、课时分配:讲授4学时、实验2学时
五、教学方法:讲授(ppt)
六、教学过程:
第一讲、计算机概述(1学时)
1、什么是计算机(概念)
2、计算机发展过程阶段年份物理器件软件特征应用范围第一代46-57电子管机器语言、汇编语言科学计算第二代58-64晶体管高级语言科学计算、数据处理、工业控制第三代65-70小规模集成电路操作系统科学计算、数据处理、工业控制、文字处理、图形处理第四代70至今大规模集成电路数据库网络等各个领域3、计算机技术发展的趋势巨型化、高性能、开放式、多媒体化、智能化、网络化
4、计算机的分类:
1)、根据规模大小分类:巨型机、大型机、中型机、小型机、微机、
2)、根据用途分类:通用计算机、专用计算机
5、计算机的主要应用
科学计算、数据处理、计算机控制、计算机辅助系统、人工智能、办公自动化系统中的应用
注:记住一些专用名字的缩写
比的应用教案13
教学目的:
1.使学生初步认识有两个已知条件的两步应用题的结构,通过比较,弄清两个已知条件的一步应用题与两步应用题的联系和区别,加深对两步应用题的理解,并学会这类应用题的分析及解答方法。
2.培养学生分析应用题的能力。
3.教育学生养成认真审题的好习惯。
教学重点:
应用题的分析方法。
教具准备:
多媒体课件
教学过程:
一、导入课题
师:同学们,我知道你们来自某某,那你们知道刘老师来自哪里吗?(不知道)我来自中国蜜桔脐橙之乡——寻乌。【出示图片】
师:在我的家乡寻乌,家家户户都有果园,漫山遍野都是果树,同学们看:【播放果园图片】
师:这节课我们就边欣赏果园图片边解决数学问题。同学们看:这片果园就是我的邻居张大爷家的。【出示图片一】果园里种有桔子树和脐橙树。
出示复习1、桔子树和脐橙树一共有多少棵?
师:这个问题你能直接解答吗?(不能)为什么?(没有已知条件或桔子树和脐橙树的棵树没有告诉我们)
师: 对了,要解答桔子树和脐橙树一共有多少棵这个问题,题目的已知条件必需要告诉我们桔子树和脐橙树的数量,现在我给这道题补上2个已知条件。
桔子树有340棵,脐橙树有400棵,桔子树和脐橙树一共有多少棵?
让学生读题后独立解答,指名说出算式和答案。
二、新授
(一)【出示图二】
师:看,这是李大伯家的果园,这片果园里有那些数学问题呢?
出示例1:
桔子树340棵,脐橙树比桔子树多60棵,桔子树和脐橙树一共有多少棵?
指两名读题,说出题目中的已知条件和问题。
讨论例题的解法,师问。
(1)根据题目中的两个已知条件,能直接计算出桔子树和脐橙树一共有多少棵吗?(不能)为什么?(因为已知条件没有直接告诉我们脐橙树的数量。)
(2)师:要解答桔子树和脐橙树一共有多少棵,我们必需知道什么?(桔子树和脐橙树的数量)
师:桔子树的数量第一个已知条件直接告诉了,脐橙树的数量第二个已知条件没有直接告诉,但我们可以根据第二个已知条件给出的信息先算出脐橙树的数量。怎样列式?(指名回答)
师板书:①脐橙树有多少棵?
340+60=400(棵)
(3)第一步算出了脐橙树有400棵, 第二步就可以算出桔子树和脐橙树一共有多少棵了,怎样列式?(全班回答)
师板书:②一共有多少棵?
340+400=740(棵)
答:桔子树和脐橙树一共有740棵。
(二)引导学生进行比较,弄清两个已知条件的一步应用题与两步应用题的联系和区别。
桔子树有340棵,脐橙树有400棵,桔子树和脐橙树一共有多少棵?
340+400=740(棵)
桔子树有340棵,脐橙树比桔子树多60棵,桔子树和脐橙树一共有多少棵?
①340+60=400(棵)
②340+400=740(棵)
师:请同学们读一读这两道题,有什么相同的地方?(都有2个已知条件,都是求桔子树和脐橙树一共有多少棵?)
师:这两道题都有2个已知条件,而且问题相同,为什么这道题(准备题)用一步解答,而这道题(例题)却用两步解答呢?(因为第一题已知条件直接告诉了我们桔子树和脐橙树的棵树,而第二题已知条件只直接告诉了我们桔子树的棵树,橙树的.棵树没有直接告诉了我们,所以,需先求出橙树的棵树。)
师小结:我们在解答只有两个已知条件的应用题时,必需认真审题,弄清条件与问题,如果根据已知条件能直接求出问题的答案的,就用一步解答;如果根据已知条件不能直接求出问题的答案的,就要考虑先算什么,再算什么,需用两步计算来解答。
三、巩固练习
师:今年邻居张大爷和李大爷为了发展果业,又开辟了一片果园,看:【出示图三】
这里又有两个数学问题,出示练习题1、2.
1、今年,张大爷家桔子树种了500棵,脐橙树比桔子树少种了100棵,张大爷家一共种了多少棵果树?
①全班读题,找出已知条件和问题,同桌讨论解法。
②指名说出解题过程,师板书算式及答案。
2、今年,李大伯家桔子树种了400棵,桔子树比脐橙树少种了100棵,李大伯家一共种了多少棵果树?
①全班读题,找出已知条件和问题,独立解答。
②指名说出解题过程,师板书算式及答案
四、发展练习
【出示图四】
师:秋天到了,两位大爷家的果园丰收了,黄澄澄的果实挂满了枝头,两位大爷想让我们帮忙算一算果园的收入,你们愿意吗?
出示练习
张大爷家的桔子买了4万元钱,脐橙卖的钱数是桔子的2倍,张大爷家的桔子和脐橙一共卖了多少钱?
①(出示练习要求:把题目读一读,找出已知条件和问题,把算式写在答题卡上。)师巡视指导
②指名说出解题过程,订正答案
3、李大伯家的脐橙买了9万元钱,脐橙卖的钱数是桔子的3倍,李大伯家的桔子和脐橙一共卖了多少钱?
①(出示练习要求:把题目读一读,找出已知条件和问题,把算式写在答题卡上。)师巡视指导
②指名说出解题过程,订正答案
五、小结评价
在我的家乡——寻乌,像张大爷李大爷这样的果农有很多,他们用自己勤劳的双手发家致富,收获着成功和希望。同学们,通过一节课的努力,你又有什么收获?学会了什么?
六、拓展练习:创编只有2个已知条件的应用题
比的应用教案14
教学目标
(一)使学生学会解答简单归一应用题并掌握这类应用题的结构特点及解题规律。
(二)使学生扩展解题思路,进一步培养学生观察、分析、解答应用题的能力。
(三)渗透从特殊到一般的辩证唯物主义思想。
教学重点和难点
重点:掌握归一应用题的结构特点(用除法先求单一量)。
难点:列综合算式时正确使用小括号。
教学过程设计
(一)复习准备
启发谈话:
我们学习了连乘、连除应用题,今天我们继续学习两步应用题。首先复习一下,以前学过的应用题中常见的数量关系。
出示练习题(投影)
口答下面的题,并说出数量关系。
3个书架75元,每个书架多少元?买5个同样的书架用多少元?
〔75÷3=25(元)数量关系是:总价÷数量=单价〕
〔25×5=125(元)数量关系是:单价×数量=总价〕
师:我们把这两问的应用题,去掉一问,还是求买5个同样的书架用多少元?这样的题怎样分析,有什么特点和规律,是我们今天要研究的新问题。
(二)学习新课
想一想,要去掉一问,还求买5个同样的书架用多少元,怎样叙述这道题。(学生思考老师板书例题)然后问学生,这样叙述可以吗?
例1:学校买3个书架,一共用75元。照这样计算,买5个要用多少元?
读题,找出已知条件和问题。
(已知条件是学校买3个书架用75元,买5个书架。问题是买5个书架用多少元?)
摘录:3个——75元
5个——?元
师:请想一想,题目中“照这样计算”是什么意思?你是怎样理解的?(互相说一说)
〔照这样计算的意思是按照买3个书架用75元计算,也就是总价÷数量=单价,按每个书架的钱数去计算。它(单价)是不变的〕
师:为了进一步理解题意,我们用直观的线段图把题目中的已知条件和问题表示出来。(同学回答,老师在黑板上画)
师:根据我们摘录的已知条件和问题,以及线段图,请同学自己分析这道题,先组织一下语言,然后讲给同桌同学听。(使每个同学都有机会发表自己的意见)
在此基础上,请同学回答:
要求买5个书架用多少元,必须先求出每个书架多少元,也就是单价。要求每个书架多少元,必须知道买几个(数量),和用多少钱(总价)。这两个条件是已知,根据3个书架75元可以求出每个书架多少元。再根据每个书架多少元(单价),和买5个书架(数量),可以求出买5个书架多少元,(也就是单价×数量=总价)
师:下面请同学按上面分析的思路,写在作业本上。
学生做完后、订正,老师板书,并请学生讲一讲每一步的意思是什么。
(1)每个书架多少元?综合算式:
75÷3=25(元)75÷3×5
(2)5个书架多少元?=25×5
25×5=125(元)=125(元)
答:买5个书架用125元。
做一做:
一辆汽车2小时行70千米。照这样计算,7小时行多少千米?
(请按我们今天学习的方法,自己独立把这题完成)
70÷2=35(千米)
35×7=245(千米)
70÷2×7
=35×7
=245(千米)
答:7小时行245千米。
同桌同学交换检查。讲一讲自己的解题思路。
师:例1的已知条件不变,把问题“买5个书架要用多少元?”改成“200元可以买多少个书架?”就是我们要学习的'例2.
出示例2:
学校买3个书架,一共用75元。照这样计算,200元可以买多少个书架?
读题、审题,独立分析思考:
(1)“照这样计算”是“照哪样计算”?
(2)要求200元能买多少个书架,必须知道什么条件?
(3)应该先算什么?再算什么?
在个人独立思考的基础上,进行小组讨论,充分发表自己的意见。
讨论后,请同学打开书,把小标题写在书上,并列出综合算式。
订正时,老师板书。
(1)每个书架多少元?综合列式:
75÷3=25(元)200÷(75÷3)
(2)200元能买多少个书架?=200÷25
200÷25=8(个)=8(个)
答:200元可以买8个书架。
师:75÷3为什么要加小括号?不加小括号行不行?为什么?
(加小括号是先求每个书架多少元)
师:我们学习了例1、例2.比较一下这两个例题,有什么相同点?有什么不同点?
(两道题前两个已知条件完全相同,第三个条件和问题不同。但是,要求5个书架多少元和200元可以买多少个书架,第一步都要先求每个书架多少元,也就是书架的单价)
下面我们看一组练习,再比较一下。
1.小林看一本故事书,3天看了24页。照这样计算,7天可以看多少页?(列综合算式解答)
2.小林看一本故事书,3天看了24页。照这样计算,全书128页,多少天可以看完?(列综合算式解答)
(三)巩固反馈
选择正确列式、并说明理由。
一台磨面机5小时磨小麦250千克。照这样计算,磨1750千克小麦,需要几小时?
A.250÷5×1750 B.1750÷(250÷5)
C.1750÷250÷5 D.1750÷250×5
小结今天我们学习了例1、例2,掌握了这类应用题结构上的特点。最后给大家留一道思考题,请用多种方法解答。
三一班同学上体育课,18人排成2行,照这样计算,全班54人排几行?
小资料〔归一问题〕
这里的“归一”,是指一种解题方法,即先求出一个单位的数量,(如单价、工效、单位面积的产量等)然后再求出题目所要求的数量。能用这种方法解答的应用题,通常称作归一问题。
在归一问题中,由于有一个单位数量保持不变(常用“照这样计算”,“同样的”等语句来说明)。因此,题里的数量成正比例关系,这就使归一问题也可以用比例知识解答。事实上,即使用算术方法解答,有时也可以根据题中数量成倍数扩大(或缩小)的特点来列式。这种解法习惯上称作“倍比法”。
课堂教学设计说明
本节课是两步应用题的教学,复习准备设计了从连续两问应用题去掉第一问,改编成两步应用题,使学生接受起来比较容易。讲授新课重点抓住“归一问题”的结构特点和解题方法。始终是引导学生思考,使学生逐步体会归一问题的特点。同时引导学生通过练习归纳总结例1、例2的相同点、不同点。从而使学生掌握这类应用题的解题规律。
比的应用教案15
教学目的:
1、学会用10以内加减法解决生活中简单的问题,初步感觉数学与日常生活的紧密联系,体验学数学用数学的.乐趣。
2、熟练口算10以内加减法,能正确解答生活中的简单问题。
3、训练同学根据挂图正确表述语言的能力。
教学重难点:熟练口算10以内加减法,能正确解答生活中的简单问题
教学准备:课件或挂图
一、引入
今天咱们到郊外去秋游,看看有哪些数学知识。
二、新授
1、加法
[出示美丽的郊外风光]
师:瞧,郊外的景色真美啊,蓝蓝的天空,美丽的花朵,还有几只蝴蝶正飞来飞去呢。
课件出示左边5只,数一数有几只蝴蝶?再出示2只,现在呢?
出示大括号和问号,师:现在有多少只蝴蝶呢?你知道用什么方法计算吗?
美丽的蝴蝶可真漂亮啊,瞧,来了一群小朋友,他们是来捉蝴蝶标本的呢!课件分步出示:1、左边4人2、右边2人3、大括号和问号,小组里互相说一说图意
分组说图意,有4人小朋友在捕蝴蝶有2人在捉蛐蛐,一共有多少人?
谁来说说图意,你知道怎样算吗?
三、课中操
四、减法图式
那边的小朋友玩的开心,这边的农民伯伯正忙着呢?出示葵花,看,这是什么?
先出示颗葵花,再演示农民摘了3颗,再出示大括号和7个最后出示问号。
问:你能说出图意吗?
想一想:用什么方法计算?
农民伯伯摘完了葵花还要摘石榴。课件分步出示石榴图,自身说出图意后想一想怎样列式。
五、练习可自身适当调配
【比的应用教案】相关文章:
小学教案比的应用01-07
比的应用教案【精品】05-22
《圆面积应用》教案11-21
《应用题二》的教案04-10
连除应用题教案04-12
比的应用教案精品15篇05-22
【推荐】比的应用教案15篇05-22
大班教案自编应用题10-24
[热]小学教案比的应用15篇01-09